{"title":"MemzNet:内存映射零拷贝网络通道,用于在100Gbps网络上移动大数据集","authors":"Mehmet Balman","doi":"10.1109/SC.Companion.2012.294","DOIUrl":null,"url":null,"abstract":"High-bandwidth networks are poised to provide new opportunities in tackling large data challenges in today's scientific applications. However, increasing the bandwidth is not sufficient by itself; we need careful evaluation of future high-bandwidth networks from the applications' perspective. We have experimented with current state-of-the-art data movement tools, and realized that file-centric data transfer protocols do not perform well with managing the transfer of many small files in high-bandwidth networks, even when using parallel streams or concurrent transfers. We require enhancements in current middleware tools to take advantage of future networking frameworks. To improve performance and efficiency, we develop an experimental prototype, called MemzNet: Memory-mapped Zero-copy Network Channel, which uses a block-based data movement method in moving large scientific datasets. We have implemented MemzNet that takes the approach of aggregating files into blocks and providing dynamic data channel management. In this work, we present our initial results in 100Gbps network.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"78 1","pages":"1511-1512"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Abstract: MemzNet: Memory-Mapped Zero-Copy Network Channel for Moving Large Datasets over 100Gbps Network\",\"authors\":\"Mehmet Balman\",\"doi\":\"10.1109/SC.Companion.2012.294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-bandwidth networks are poised to provide new opportunities in tackling large data challenges in today's scientific applications. However, increasing the bandwidth is not sufficient by itself; we need careful evaluation of future high-bandwidth networks from the applications' perspective. We have experimented with current state-of-the-art data movement tools, and realized that file-centric data transfer protocols do not perform well with managing the transfer of many small files in high-bandwidth networks, even when using parallel streams or concurrent transfers. We require enhancements in current middleware tools to take advantage of future networking frameworks. To improve performance and efficiency, we develop an experimental prototype, called MemzNet: Memory-mapped Zero-copy Network Channel, which uses a block-based data movement method in moving large scientific datasets. We have implemented MemzNet that takes the approach of aggregating files into blocks and providing dynamic data channel management. In this work, we present our initial results in 100Gbps network.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"78 1\",\"pages\":\"1511-1512\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract: MemzNet: Memory-Mapped Zero-Copy Network Channel for Moving Large Datasets over 100Gbps Network
High-bandwidth networks are poised to provide new opportunities in tackling large data challenges in today's scientific applications. However, increasing the bandwidth is not sufficient by itself; we need careful evaluation of future high-bandwidth networks from the applications' perspective. We have experimented with current state-of-the-art data movement tools, and realized that file-centric data transfer protocols do not perform well with managing the transfer of many small files in high-bandwidth networks, even when using parallel streams or concurrent transfers. We require enhancements in current middleware tools to take advantage of future networking frameworks. To improve performance and efficiency, we develop an experimental prototype, called MemzNet: Memory-mapped Zero-copy Network Channel, which uses a block-based data movement method in moving large scientific datasets. We have implemented MemzNet that takes the approach of aggregating files into blocks and providing dynamic data channel management. In this work, we present our initial results in 100Gbps network.