MemzNet:内存映射零拷贝网络通道,用于在100Gbps网络上移动大数据集

Mehmet Balman
{"title":"MemzNet:内存映射零拷贝网络通道,用于在100Gbps网络上移动大数据集","authors":"Mehmet Balman","doi":"10.1109/SC.Companion.2012.294","DOIUrl":null,"url":null,"abstract":"High-bandwidth networks are poised to provide new opportunities in tackling large data challenges in today's scientific applications. However, increasing the bandwidth is not sufficient by itself; we need careful evaluation of future high-bandwidth networks from the applications' perspective. We have experimented with current state-of-the-art data movement tools, and realized that file-centric data transfer protocols do not perform well with managing the transfer of many small files in high-bandwidth networks, even when using parallel streams or concurrent transfers. We require enhancements in current middleware tools to take advantage of future networking frameworks. To improve performance and efficiency, we develop an experimental prototype, called MemzNet: Memory-mapped Zero-copy Network Channel, which uses a block-based data movement method in moving large scientific datasets. We have implemented MemzNet that takes the approach of aggregating files into blocks and providing dynamic data channel management. In this work, we present our initial results in 100Gbps network.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"78 1","pages":"1511-1512"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Abstract: MemzNet: Memory-Mapped Zero-Copy Network Channel for Moving Large Datasets over 100Gbps Network\",\"authors\":\"Mehmet Balman\",\"doi\":\"10.1109/SC.Companion.2012.294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-bandwidth networks are poised to provide new opportunities in tackling large data challenges in today's scientific applications. However, increasing the bandwidth is not sufficient by itself; we need careful evaluation of future high-bandwidth networks from the applications' perspective. We have experimented with current state-of-the-art data movement tools, and realized that file-centric data transfer protocols do not perform well with managing the transfer of many small files in high-bandwidth networks, even when using parallel streams or concurrent transfers. We require enhancements in current middleware tools to take advantage of future networking frameworks. To improve performance and efficiency, we develop an experimental prototype, called MemzNet: Memory-mapped Zero-copy Network Channel, which uses a block-based data movement method in moving large scientific datasets. We have implemented MemzNet that takes the approach of aggregating files into blocks and providing dynamic data channel management. In this work, we present our initial results in 100Gbps network.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"78 1\",\"pages\":\"1511-1512\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在当今的科学应用中,高带宽网络为应对大数据挑战提供了新的机遇。然而,增加带宽本身是不够的;我们需要从应用的角度对未来的高带宽网络进行仔细的评估。我们对当前最先进的数据移动工具进行了实验,并意识到以文件为中心的数据传输协议在管理高带宽网络中许多小文件的传输方面表现不佳,即使在使用并行流或并发传输时也是如此。我们需要增强当前的中间件工具,以利用未来的网络框架。为了提高性能和效率,我们开发了一个实验原型,称为MemzNet:内存映射零复制网络通道,它使用基于块的数据移动方法来移动大型科学数据集。我们已经实现了MemzNet,它采用将文件聚合到块中的方法,并提供动态数据通道管理。在这项工作中,我们介绍了我们在100Gbps网络中的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract: MemzNet: Memory-Mapped Zero-Copy Network Channel for Moving Large Datasets over 100Gbps Network
High-bandwidth networks are poised to provide new opportunities in tackling large data challenges in today's scientific applications. However, increasing the bandwidth is not sufficient by itself; we need careful evaluation of future high-bandwidth networks from the applications' perspective. We have experimented with current state-of-the-art data movement tools, and realized that file-centric data transfer protocols do not perform well with managing the transfer of many small files in high-bandwidth networks, even when using parallel streams or concurrent transfers. We require enhancements in current middleware tools to take advantage of future networking frameworks. To improve performance and efficiency, we develop an experimental prototype, called MemzNet: Memory-mapped Zero-copy Network Channel, which uses a block-based data movement method in moving large scientific datasets. We have implemented MemzNet that takes the approach of aggregating files into blocks and providing dynamic data channel management. In this work, we present our initial results in 100Gbps network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1