基于深度卷积神经网络的人脸标记成本缓解学习

Takayoshi Yamashita, Takaya Nakamura, Hiroshi Fukui, Yuji Yamauchi, H. Fujiyoshi
{"title":"基于深度卷积神经网络的人脸标记成本缓解学习","authors":"Takayoshi Yamashita, Takaya Nakamura, Hiroshi Fukui, Yuji Yamauchi, H. Fujiyoshi","doi":"10.2197/ipsjtcva.7.99","DOIUrl":null,"url":null,"abstract":"Facial part labeling which is parsing semantic components enables high-level facial image analysis, and contributes greatly to face recognition, expression recognition, animation, and synthesis. In this paper, we propose a cost-alleviative learning method that uses a weighted cost function to improve the performance of certain classes during facial part labeling. As the conventional cost function handles the error in all classes equally, the error in a class with a slightly biased prior probability tends not to be propagated. The weighted cost function enables the training coefficient for each class to be adjusted. In addition, the boundaries of each class may be recognized after fewer iterations, which will improve the performance. In facial part labeling, the recognition performance of the eye class can be significantly improved using cost-alleviative learning.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"22 4 1","pages":"99-103"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Cost-alleviative Learning for Deep Convolutional Neural Network-based Facial Part Labeling\",\"authors\":\"Takayoshi Yamashita, Takaya Nakamura, Hiroshi Fukui, Yuji Yamauchi, H. Fujiyoshi\",\"doi\":\"10.2197/ipsjtcva.7.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial part labeling which is parsing semantic components enables high-level facial image analysis, and contributes greatly to face recognition, expression recognition, animation, and synthesis. In this paper, we propose a cost-alleviative learning method that uses a weighted cost function to improve the performance of certain classes during facial part labeling. As the conventional cost function handles the error in all classes equally, the error in a class with a slightly biased prior probability tends not to be propagated. The weighted cost function enables the training coefficient for each class to be adjusted. In addition, the boundaries of each class may be recognized after fewer iterations, which will improve the performance. In facial part labeling, the recognition performance of the eye class can be significantly improved using cost-alleviative learning.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"22 4 1\",\"pages\":\"99-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.7.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 13

摘要

面部部位标注是对语义成分进行解析的一种方法,能够对面部图像进行高层次的分析,对人脸识别、表情识别、动画合成等都有重要的贡献。在本文中,我们提出了一种成本缓解学习方法,该方法使用加权成本函数来提高面部部分标记过程中某些类的性能。由于传统的代价函数对所有类的误差处理都是平等的,所以具有轻微先验概率偏差的类的误差往往不会传播。加权代价函数使每个类别的训练系数可以调整。此外,可以在较少的迭代后识别每个类的边界,从而提高性能。在面部标记中,使用成本缓解学习可以显著提高眼类的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost-alleviative Learning for Deep Convolutional Neural Network-based Facial Part Labeling
Facial part labeling which is parsing semantic components enables high-level facial image analysis, and contributes greatly to face recognition, expression recognition, animation, and synthesis. In this paper, we propose a cost-alleviative learning method that uses a weighted cost function to improve the performance of certain classes during facial part labeling. As the conventional cost function handles the error in all classes equally, the error in a class with a slightly biased prior probability tends not to be propagated. The weighted cost function enables the training coefficient for each class to be adjusted. In addition, the boundaries of each class may be recognized after fewer iterations, which will improve the performance. In facial part labeling, the recognition performance of the eye class can be significantly improved using cost-alleviative learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
期刊最新文献
3D human pose estimation model using location-maps for distorted and disconnected images by a wearable omnidirectional camera Application of evolutionary and swarm optimization in computer vision: a literature survey Pseudo-labelling-aided semantic segmentation on sparsely annotated 3D point clouds Phase disambiguation using spatio-temporally modulated illumination in depth sensing Deep learning-based strategies for the detection and tracking of drones using several cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1