基于物理信息的深度神经网络用于时间回溯预测:在rayleigh - bsamadard对流中的应用

Mohamad Abed El Rahman Hammoud, Humam Alwassel, Bernard Ghanem, O. Knio, I. Hoteit
{"title":"基于物理信息的深度神经网络用于时间回溯预测:在rayleigh - bsamadard对流中的应用","authors":"Mohamad Abed El Rahman Hammoud, Humam Alwassel, Bernard Ghanem, O. Knio, I. Hoteit","doi":"10.1175/aies-d-22-0076.1","DOIUrl":null,"url":null,"abstract":"\nBackward-in-time predictions are needed to better understand the underlying dynamics of physical fluid flows and improve future forecasts. However, integrating fluid flows backward in time is challenging because of numerical instabilities caused by the diffusive nature of the fluid systems and nonlinearities of the governing equations. Although this problem has been long addressed using a non-positive diffusion coefficient when integrating backward, it is notoriously inaccurate. In this study, a physics-informed deep neural network (PI-DNN) is presented to predict past states of a dissipative dynamical system from snapshots of the subsequent evolution of the system state. The performance of the PI-DNN is investigated using several systematic numerical experiments and the accuracy of the backward-in-time predictions is evaluated in terms of different error metrics. The proposed PI-DNN can predict the previous state of the Rayleigh–Bénard convection with an 8-time step average normalized ℓ2-error of less than 2% for a turbulent flow at a Rayleigh number of 105.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-Informed Deep Neural Network for Backward-in-Time Prediction: Application to Rayleigh–Bénard Convection\",\"authors\":\"Mohamad Abed El Rahman Hammoud, Humam Alwassel, Bernard Ghanem, O. Knio, I. Hoteit\",\"doi\":\"10.1175/aies-d-22-0076.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nBackward-in-time predictions are needed to better understand the underlying dynamics of physical fluid flows and improve future forecasts. However, integrating fluid flows backward in time is challenging because of numerical instabilities caused by the diffusive nature of the fluid systems and nonlinearities of the governing equations. Although this problem has been long addressed using a non-positive diffusion coefficient when integrating backward, it is notoriously inaccurate. In this study, a physics-informed deep neural network (PI-DNN) is presented to predict past states of a dissipative dynamical system from snapshots of the subsequent evolution of the system state. The performance of the PI-DNN is investigated using several systematic numerical experiments and the accuracy of the backward-in-time predictions is evaluated in terms of different error metrics. The proposed PI-DNN can predict the previous state of the Rayleigh–Bénard convection with an 8-time step average normalized ℓ2-error of less than 2% for a turbulent flow at a Rayleigh number of 105.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0076.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0076.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地了解物理流体流动的潜在动力学并改进未来的预测,需要进行时间回溯预测。然而,由于流体系统的扩散特性和控制方程的非线性导致数值不稳定性,对流体在时间上的反向流动进行积分是一项挑战。虽然这个问题已经解决了很长时间使用非正扩散系数时,积分向后,它是出了名的不准确。在这项研究中,提出了一个物理信息的深度神经网络(PI-DNN),通过系统状态的后续演化快照来预测耗散动力系统的过去状态。通过几个系统的数值实验研究了PI-DNN的性能,并根据不同的误差指标评估了反向时间预测的准确性。对于瑞利数为105的湍流,所提出的PI-DNN能以小于2%的8时间步长平均归一化误差预测瑞利- bsamadard对流的前态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physics-Informed Deep Neural Network for Backward-in-Time Prediction: Application to Rayleigh–Bénard Convection
Backward-in-time predictions are needed to better understand the underlying dynamics of physical fluid flows and improve future forecasts. However, integrating fluid flows backward in time is challenging because of numerical instabilities caused by the diffusive nature of the fluid systems and nonlinearities of the governing equations. Although this problem has been long addressed using a non-positive diffusion coefficient when integrating backward, it is notoriously inaccurate. In this study, a physics-informed deep neural network (PI-DNN) is presented to predict past states of a dissipative dynamical system from snapshots of the subsequent evolution of the system state. The performance of the PI-DNN is investigated using several systematic numerical experiments and the accuracy of the backward-in-time predictions is evaluated in terms of different error metrics. The proposed PI-DNN can predict the previous state of the Rayleigh–Bénard convection with an 8-time step average normalized ℓ2-error of less than 2% for a turbulent flow at a Rayleigh number of 105.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1