{"title":"基于二元决策图的多输入变化下的无危险多级逻辑综合","authors":"Bill Lin, S. Devadas","doi":"10.1109/ICCAD.1994.629874","DOIUrl":null,"url":null,"abstract":"We describe a new method for directly synthesizing a hazard-free multilevel logic implementation from a given logic specification. The method is based on free/ordered Binary Decision Diagrams (BDD's), and is naturally applicable to multiple-output logic functions. Given an incompletely-specified (multiple-output) Boolean function, the method produces a multilevel logic network that is hazard-free for a specified set of multiple-input changes. We assume an arbitrary (unbounded) gate and wire delay model under a pure delay (PD) assumption, we permit multiple-input changes, and we consider both static and dynamic hazards. This problem is generally regarded as a difficult problem and it has important applications in the field of asynchronous design. The method has been automated and applied to a number of examples. The results we have obtained are very promising.","PeriodicalId":90518,"journal":{"name":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","volume":"34 1","pages":"542-549"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Synthesis Of Hazard-free Multi-level Logic Under Multiple-input Changes From Binary Decision Diagrams\",\"authors\":\"Bill Lin, S. Devadas\",\"doi\":\"10.1109/ICCAD.1994.629874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a new method for directly synthesizing a hazard-free multilevel logic implementation from a given logic specification. The method is based on free/ordered Binary Decision Diagrams (BDD's), and is naturally applicable to multiple-output logic functions. Given an incompletely-specified (multiple-output) Boolean function, the method produces a multilevel logic network that is hazard-free for a specified set of multiple-input changes. We assume an arbitrary (unbounded) gate and wire delay model under a pure delay (PD) assumption, we permit multiple-input changes, and we consider both static and dynamic hazards. This problem is generally regarded as a difficult problem and it has important applications in the field of asynchronous design. The method has been automated and applied to a number of examples. The results we have obtained are very promising.\",\"PeriodicalId\":90518,\"journal\":{\"name\":\"ICCAD. IEEE/ACM International Conference on Computer-Aided Design\",\"volume\":\"34 1\",\"pages\":\"542-549\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAD. IEEE/ACM International Conference on Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1994.629874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1994.629874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis Of Hazard-free Multi-level Logic Under Multiple-input Changes From Binary Decision Diagrams
We describe a new method for directly synthesizing a hazard-free multilevel logic implementation from a given logic specification. The method is based on free/ordered Binary Decision Diagrams (BDD's), and is naturally applicable to multiple-output logic functions. Given an incompletely-specified (multiple-output) Boolean function, the method produces a multilevel logic network that is hazard-free for a specified set of multiple-input changes. We assume an arbitrary (unbounded) gate and wire delay model under a pure delay (PD) assumption, we permit multiple-input changes, and we consider both static and dynamic hazards. This problem is generally regarded as a difficult problem and it has important applications in the field of asynchronous design. The method has been automated and applied to a number of examples. The results we have obtained are very promising.