基于新型压力速率-温度瞬态PTRA分析的光纤传感注水剖面

Mohammed Al-Hashemi, D. Spivakovskaya, Evert Moes, P. I. '. Panhuis, G. Hemink, V. Shako, Dmitry Kortukov
{"title":"基于新型压力速率-温度瞬态PTRA分析的光纤传感注水剖面","authors":"Mohammed Al-Hashemi, D. Spivakovskaya, Evert Moes, P. I. '. Panhuis, G. Hemink, V. Shako, Dmitry Kortukov","doi":"10.2118/204713-ms","DOIUrl":null,"url":null,"abstract":"\n Fiber Optic Systems, such as Distributed Temperature Sensing (DTS), have been used for wellbore surveillance for more than two decades. One of the traditional applications of DTS is injectivity profiling, both for hydraulically fractured and non-fractured wells. There is a long history of determining injectivity profiles using temperature profiles, usually by analyzing warm-back data with largely pure heat conduction models or by employing a so-called \"hot-slug\" approach that requires tracking of a temperature transient that arises at the onset of injection. In many of these attempts there is no analysis performed for the key influencing physical factors that could create significant ambiguity in the interpretation results. Among such factors we will consider in detail is the possible impact of cross-flow during the early warm-back stage, but also the temperature transient signal that is related to the location of the fiber-optic sensing cable behind the casing when the fast transient data are used for interpretation such as the \"hot slug\" during re-injection.\n In this paper it will be shown that despite all such potential complications, the high frequency and quality of the transient data that can be obtained from a continuous DTS measurement allow for a highly reliable and robust evaluation of the injectivity profile. The well-known challenge of the ambiguity of the interpretation, produced by the interpretation methods that are conventionally used, is overcome using the innovative \"Pressure Rate Temperature Transient Analysis\" method that takes maximum use of the complete DTS transient data set and all other available data at the level of the model-based interpretation. This method is based on conversion of field measurements into injectivity profiles taking into account the uncertainty in different parts of the data set, which includes the specifics of the DTS deployment, the uncertainty in surface flow rates, and possible data gaps in the history of the well.\n Several case studies will be discussed where this approach was applied to water injection wells. For the analysis, the re-injection and warmback DTS transient temperature measurements were taken from across the sandface. Furthermore, for comparison, injection profiles were also recorded by conventional PLTs in parallel.\n This case study will focus mostly on the advanced interpretation opportunities and the challenges related to crossflow through the wellbore during the warm-back phase, related to reservoir pressure dynamics, and finally related to the impact of the method of DTS deployment. In addition to describing the interpretation methodology, this paper will also show the final comparison of the fiber-optic evaluation with the interpretation obtained from the reference PLTs.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water Injection Profiling Using Fiber Optic Sensing by Applying the Novel Pressure Rate Temperature Transient PTRA Analysis\",\"authors\":\"Mohammed Al-Hashemi, D. Spivakovskaya, Evert Moes, P. I. '. Panhuis, G. Hemink, V. Shako, Dmitry Kortukov\",\"doi\":\"10.2118/204713-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fiber Optic Systems, such as Distributed Temperature Sensing (DTS), have been used for wellbore surveillance for more than two decades. One of the traditional applications of DTS is injectivity profiling, both for hydraulically fractured and non-fractured wells. There is a long history of determining injectivity profiles using temperature profiles, usually by analyzing warm-back data with largely pure heat conduction models or by employing a so-called \\\"hot-slug\\\" approach that requires tracking of a temperature transient that arises at the onset of injection. In many of these attempts there is no analysis performed for the key influencing physical factors that could create significant ambiguity in the interpretation results. Among such factors we will consider in detail is the possible impact of cross-flow during the early warm-back stage, but also the temperature transient signal that is related to the location of the fiber-optic sensing cable behind the casing when the fast transient data are used for interpretation such as the \\\"hot slug\\\" during re-injection.\\n In this paper it will be shown that despite all such potential complications, the high frequency and quality of the transient data that can be obtained from a continuous DTS measurement allow for a highly reliable and robust evaluation of the injectivity profile. The well-known challenge of the ambiguity of the interpretation, produced by the interpretation methods that are conventionally used, is overcome using the innovative \\\"Pressure Rate Temperature Transient Analysis\\\" method that takes maximum use of the complete DTS transient data set and all other available data at the level of the model-based interpretation. This method is based on conversion of field measurements into injectivity profiles taking into account the uncertainty in different parts of the data set, which includes the specifics of the DTS deployment, the uncertainty in surface flow rates, and possible data gaps in the history of the well.\\n Several case studies will be discussed where this approach was applied to water injection wells. For the analysis, the re-injection and warmback DTS transient temperature measurements were taken from across the sandface. Furthermore, for comparison, injection profiles were also recorded by conventional PLTs in parallel.\\n This case study will focus mostly on the advanced interpretation opportunities and the challenges related to crossflow through the wellbore during the warm-back phase, related to reservoir pressure dynamics, and finally related to the impact of the method of DTS deployment. In addition to describing the interpretation methodology, this paper will also show the final comparison of the fiber-optic evaluation with the interpretation obtained from the reference PLTs.\",\"PeriodicalId\":11094,\"journal\":{\"name\":\"Day 2 Mon, November 29, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, November 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204713-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204713-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光纤系统,如分布式温度传感(DTS),已经在井筒监测中使用了20多年。DTS的传统应用之一是注入能力分析,适用于水力压裂井和非压裂井。利用温度剖面确定注入率剖面的历史很长,通常是通过分析大部分纯热传导模型的暖回数据,或者采用所谓的“热段塞”方法,该方法需要跟踪注入开始时出现的温度瞬态。在许多这些尝试中,没有对可能在解释结果中造成重大歧义的关键影响物理因素进行分析。在这些因素中,我们将详细考虑早期暖回阶段交叉流动的可能影响,以及当快速瞬态数据用于解释时(如回注期间的“热段塞”),与套管后光纤传感电缆位置相关的温度瞬态信号。本文将表明,尽管存在所有这些潜在的复杂性,但从连续DTS测量中获得的高频率和高质量的瞬态数据允许对注入性剖面进行高度可靠和稳健的评估。众所周知,由传统的解释方法产生的解释的模糊性的挑战,通过创新的“压力速率温度瞬态分析”方法来克服,该方法最大限度地利用了完整的DTS瞬态数据集和所有其他可用的数据,在基于模型的解释水平。该方法基于将现场测量数据转换为注入能力剖面,同时考虑到数据集不同部分的不确定性,包括DTS部署的具体情况、地面流速的不确定性以及井历史中可能存在的数据缺口。本文将讨论将该方法应用于注水井的几个案例。为了进行分析,在整个井壁进行了回注和回注DTS瞬态温度测量。此外,为了进行比较,常规plt也记录了注入剖面。本案例研究将主要关注与暖回阶段井筒横流相关的高级解释机会和挑战,与油藏压力动态有关,最后与DTS部署方法的影响有关。除了描述解释方法外,本文还将展示光纤评估与参考plt获得的解释的最终比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Water Injection Profiling Using Fiber Optic Sensing by Applying the Novel Pressure Rate Temperature Transient PTRA Analysis
Fiber Optic Systems, such as Distributed Temperature Sensing (DTS), have been used for wellbore surveillance for more than two decades. One of the traditional applications of DTS is injectivity profiling, both for hydraulically fractured and non-fractured wells. There is a long history of determining injectivity profiles using temperature profiles, usually by analyzing warm-back data with largely pure heat conduction models or by employing a so-called "hot-slug" approach that requires tracking of a temperature transient that arises at the onset of injection. In many of these attempts there is no analysis performed for the key influencing physical factors that could create significant ambiguity in the interpretation results. Among such factors we will consider in detail is the possible impact of cross-flow during the early warm-back stage, but also the temperature transient signal that is related to the location of the fiber-optic sensing cable behind the casing when the fast transient data are used for interpretation such as the "hot slug" during re-injection. In this paper it will be shown that despite all such potential complications, the high frequency and quality of the transient data that can be obtained from a continuous DTS measurement allow for a highly reliable and robust evaluation of the injectivity profile. The well-known challenge of the ambiguity of the interpretation, produced by the interpretation methods that are conventionally used, is overcome using the innovative "Pressure Rate Temperature Transient Analysis" method that takes maximum use of the complete DTS transient data set and all other available data at the level of the model-based interpretation. This method is based on conversion of field measurements into injectivity profiles taking into account the uncertainty in different parts of the data set, which includes the specifics of the DTS deployment, the uncertainty in surface flow rates, and possible data gaps in the history of the well. Several case studies will be discussed where this approach was applied to water injection wells. For the analysis, the re-injection and warmback DTS transient temperature measurements were taken from across the sandface. Furthermore, for comparison, injection profiles were also recorded by conventional PLTs in parallel. This case study will focus mostly on the advanced interpretation opportunities and the challenges related to crossflow through the wellbore during the warm-back phase, related to reservoir pressure dynamics, and finally related to the impact of the method of DTS deployment. In addition to describing the interpretation methodology, this paper will also show the final comparison of the fiber-optic evaluation with the interpretation obtained from the reference PLTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Leaders Can Shape the Oil & Gas Industry – Accelerating Innovations Through Business & Environmental Intelligent Systems High Performance Friction Reducer for Slickwater Fracturing Applications: Laboratory Study and Field Implementation CO2 Waterless Fracturing and Huff and Puff in Tight Oil Reservoir Switched Reluctance Motor for Electric Submersible Pump Sparse Water Fracture Channel Detection from Subsurface Sensors Via a Smart Orthogonal Matching Pursuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1