Haris Gulzar, Muhammad Shakeel, Kenji Nishida, Katsutoshi Itoyama, K. Nakadai, H. Amano
{"title":"案例:边缘计算中语音分类的CNN加速","authors":"Haris Gulzar, Muhammad Shakeel, Kenji Nishida, Katsutoshi Itoyama, K. Nakadai, H. Amano","doi":"10.1109/IEEECloudSummit52029.2021.00018","DOIUrl":null,"url":null,"abstract":"High performance of Machine Learning algorithms has enabled numerous applications based upon speech interface in our daily life, but most of the frameworks use computationally expensive algorithms deployed on cloud servers as speech recognition engines. With the recent surge in the number of IoT devices, a robust and scalable solution for enabling AI applications on IoT devices is inevitable in form of edge computing. In this paper, we propose the application of Systemon-Chip (SoC) powered edge computing device as accelerator for speech commands classification using Convolutional Neural Network (CNN). Different aspects affecting the CNN performance are explored and an efficient and light-weight model named as CASENet is proposed which achieves state-of-the-art performance with significantly smaller number of parameters and operations. Efficient extraction of useful features from audio signal helped to maintain high accuracy with a 6X smaller number of parameters, making CASENet the smallest CNN in comparison to similarly performing networks. Light-weight nature of the model has led to achieve 96.45% validation accuracy with a 14X smaller number of operations which makes it ideal for low-power IoT and edge devices. A CNN accelerator is designed and deployed on FPGA part of SoC equipped edge server device. The hardware accelerator helped to improve the inference latency of speech command by a 6.7X factor as compared to standard implementation. Memory, computational cost and latency are the most important metrics for selecting a model to deploy on edge computing devices, and CASENet along with the accelerator surpasses all of these requirements.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"27 1","pages":"63-68"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CASE: CNN Acceleration for Speech-Classification in Edge-Computing\",\"authors\":\"Haris Gulzar, Muhammad Shakeel, Kenji Nishida, Katsutoshi Itoyama, K. Nakadai, H. Amano\",\"doi\":\"10.1109/IEEECloudSummit52029.2021.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High performance of Machine Learning algorithms has enabled numerous applications based upon speech interface in our daily life, but most of the frameworks use computationally expensive algorithms deployed on cloud servers as speech recognition engines. With the recent surge in the number of IoT devices, a robust and scalable solution for enabling AI applications on IoT devices is inevitable in form of edge computing. In this paper, we propose the application of Systemon-Chip (SoC) powered edge computing device as accelerator for speech commands classification using Convolutional Neural Network (CNN). Different aspects affecting the CNN performance are explored and an efficient and light-weight model named as CASENet is proposed which achieves state-of-the-art performance with significantly smaller number of parameters and operations. Efficient extraction of useful features from audio signal helped to maintain high accuracy with a 6X smaller number of parameters, making CASENet the smallest CNN in comparison to similarly performing networks. Light-weight nature of the model has led to achieve 96.45% validation accuracy with a 14X smaller number of operations which makes it ideal for low-power IoT and edge devices. A CNN accelerator is designed and deployed on FPGA part of SoC equipped edge server device. The hardware accelerator helped to improve the inference latency of speech command by a 6.7X factor as compared to standard implementation. Memory, computational cost and latency are the most important metrics for selecting a model to deploy on edge computing devices, and CASENet along with the accelerator surpasses all of these requirements.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"27 1\",\"pages\":\"63-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECloudSummit52029.2021.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECloudSummit52029.2021.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
CASE: CNN Acceleration for Speech-Classification in Edge-Computing
High performance of Machine Learning algorithms has enabled numerous applications based upon speech interface in our daily life, but most of the frameworks use computationally expensive algorithms deployed on cloud servers as speech recognition engines. With the recent surge in the number of IoT devices, a robust and scalable solution for enabling AI applications on IoT devices is inevitable in form of edge computing. In this paper, we propose the application of Systemon-Chip (SoC) powered edge computing device as accelerator for speech commands classification using Convolutional Neural Network (CNN). Different aspects affecting the CNN performance are explored and an efficient and light-weight model named as CASENet is proposed which achieves state-of-the-art performance with significantly smaller number of parameters and operations. Efficient extraction of useful features from audio signal helped to maintain high accuracy with a 6X smaller number of parameters, making CASENet the smallest CNN in comparison to similarly performing networks. Light-weight nature of the model has led to achieve 96.45% validation accuracy with a 14X smaller number of operations which makes it ideal for low-power IoT and edge devices. A CNN accelerator is designed and deployed on FPGA part of SoC equipped edge server device. The hardware accelerator helped to improve the inference latency of speech command by a 6.7X factor as compared to standard implementation. Memory, computational cost and latency are the most important metrics for selecting a model to deploy on edge computing devices, and CASENet along with the accelerator surpasses all of these requirements.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)