基于原位IV表征系统和高斯过程算法的光伏串故障自动分类

C. B. Jones, M. Martínez‐Ramón, Ryan M. Smith, C. Carmignani, O. Lavrova, Charles D. Robinson, J. Stein
{"title":"基于原位IV表征系统和高斯过程算法的光伏串故障自动分类","authors":"C. B. Jones, M. Martínez‐Ramón, Ryan M. Smith, C. Carmignani, O. Lavrova, Charles D. Robinson, J. Stein","doi":"10.1109/PVSC.2016.7749915","DOIUrl":null,"url":null,"abstract":"Current-voltage (I-V) curve traces of photovoltaic (PV) systems can provide detailed information for diagnosing fault conditions. The present work implemented an in situ, automatic I-V curve tracer system coupled with Support Vector Machine and a Gaussian Process algorithms to classify and estimate abnormal and normal PV performance. The approach successfully identified normal and fault conditions. In addition, the Gaussian Process regression algorithm was used to estimate ideal I-V curves based on a given irradiance and temperature condition. The estimation results were then used to calculate the lost power due to the fault condition.","PeriodicalId":6524,"journal":{"name":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","volume":"35 1","pages":"1708-1713"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Automatic fault classification of photovoltaic strings based on an in situ IV characterization system and a Gaussian process algorithm\",\"authors\":\"C. B. Jones, M. Martínez‐Ramón, Ryan M. Smith, C. Carmignani, O. Lavrova, Charles D. Robinson, J. Stein\",\"doi\":\"10.1109/PVSC.2016.7749915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current-voltage (I-V) curve traces of photovoltaic (PV) systems can provide detailed information for diagnosing fault conditions. The present work implemented an in situ, automatic I-V curve tracer system coupled with Support Vector Machine and a Gaussian Process algorithms to classify and estimate abnormal and normal PV performance. The approach successfully identified normal and fault conditions. In addition, the Gaussian Process regression algorithm was used to estimate ideal I-V curves based on a given irradiance and temperature condition. The estimation results were then used to calculate the lost power due to the fault condition.\",\"PeriodicalId\":6524,\"journal\":{\"name\":\"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"35 1\",\"pages\":\"1708-1713\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2016.7749915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2016.7749915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

光伏系统的电流-电压(I-V)曲线轨迹可以为故障诊断提供详细的信息。本工作实现了一个现场自动I-V曲线示踪系统,结合支持向量机和高斯过程算法来分类和估计异常和正常PV性能。该方法成功地识别了正常和故障状态。此外,在给定辐照度和温度条件下,采用高斯过程回归算法估计理想的I-V曲线。然后将估计结果用于计算故障情况下的损失功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic fault classification of photovoltaic strings based on an in situ IV characterization system and a Gaussian process algorithm
Current-voltage (I-V) curve traces of photovoltaic (PV) systems can provide detailed information for diagnosing fault conditions. The present work implemented an in situ, automatic I-V curve tracer system coupled with Support Vector Machine and a Gaussian Process algorithms to classify and estimate abnormal and normal PV performance. The approach successfully identified normal and fault conditions. In addition, the Gaussian Process regression algorithm was used to estimate ideal I-V curves based on a given irradiance and temperature condition. The estimation results were then used to calculate the lost power due to the fault condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting the efficiency of III-V/Si tandem solar cells Bandgap and carrier transport engineering of quantum confined mixed phase nanocrystalline/amorphous silicon Improving the radiation hardness of space solar cells via nanophotonic light trapping A comparison between two MPC algorithms for demand charge reduction in a real-world microgrid system Enhancing grain growth and boosting Voc in CZTSe absorber layers — Is Ge doping the answer?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1