{"title":"两类救护车定位调度的随机规划方法","authors":"Soovin Yoon, Laura A. Albert, V. White","doi":"10.1287/trsc.2020.1023","DOIUrl":null,"url":null,"abstract":"Emergency Medical Service systems aim to respond to emergency calls in a timely manner and provide prehospital care to patients. This paper addresses the problem of locating multiple types of emergency vehicles to stations while taking into account that vehicles are dispatched to prioritized patients with different health needs. We propose a two-stage stochastic-programming model that determines how to locate two types of ambulances in the first stage and dispatch them to prioritized emergency patients in the second stage after call-arrival scenarios are disclosed. We demonstrate how the base model can be adapted to include nontransport vehicles. A model formulation generalizes the base model to consider probabilistic travel times and general utilities for dispatching ambulances to prioritized patients. We evaluate the benefit of the model using two case studies, a value of the stochastic solution approach, and a simulation analysis. The case study is extended to study how to locate vehicles in the model extension with nontransport vehicles. Stochastic-programming models are computationally challenging for large-scale problem instances, and, therefore, we propose a solution technique based on Benders cuts.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"95 1","pages":"275-296"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A Stochastic Programming Approach for Locating and Dispatching Two Types of Ambulances\",\"authors\":\"Soovin Yoon, Laura A. Albert, V. White\",\"doi\":\"10.1287/trsc.2020.1023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emergency Medical Service systems aim to respond to emergency calls in a timely manner and provide prehospital care to patients. This paper addresses the problem of locating multiple types of emergency vehicles to stations while taking into account that vehicles are dispatched to prioritized patients with different health needs. We propose a two-stage stochastic-programming model that determines how to locate two types of ambulances in the first stage and dispatch them to prioritized emergency patients in the second stage after call-arrival scenarios are disclosed. We demonstrate how the base model can be adapted to include nontransport vehicles. A model formulation generalizes the base model to consider probabilistic travel times and general utilities for dispatching ambulances to prioritized patients. We evaluate the benefit of the model using two case studies, a value of the stochastic solution approach, and a simulation analysis. The case study is extended to study how to locate vehicles in the model extension with nontransport vehicles. Stochastic-programming models are computationally challenging for large-scale problem instances, and, therefore, we propose a solution technique based on Benders cuts.\",\"PeriodicalId\":23247,\"journal\":{\"name\":\"Transp. Sci.\",\"volume\":\"95 1\",\"pages\":\"275-296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transp. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2020.1023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2020.1023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Stochastic Programming Approach for Locating and Dispatching Two Types of Ambulances
Emergency Medical Service systems aim to respond to emergency calls in a timely manner and provide prehospital care to patients. This paper addresses the problem of locating multiple types of emergency vehicles to stations while taking into account that vehicles are dispatched to prioritized patients with different health needs. We propose a two-stage stochastic-programming model that determines how to locate two types of ambulances in the first stage and dispatch them to prioritized emergency patients in the second stage after call-arrival scenarios are disclosed. We demonstrate how the base model can be adapted to include nontransport vehicles. A model formulation generalizes the base model to consider probabilistic travel times and general utilities for dispatching ambulances to prioritized patients. We evaluate the benefit of the model using two case studies, a value of the stochastic solution approach, and a simulation analysis. The case study is extended to study how to locate vehicles in the model extension with nontransport vehicles. Stochastic-programming models are computationally challenging for large-scale problem instances, and, therefore, we propose a solution technique based on Benders cuts.