地下非共面交埋铁管道磁异常特征分析

IF 1 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Journal of Environmental and Engineering Geophysics Pub Date : 2020-06-01 DOI:10.2113/JEEG19-092
Pan Wu, Minghui Wei
{"title":"地下非共面交埋铁管道磁异常特征分析","authors":"Pan Wu, Minghui Wei","doi":"10.2113/JEEG19-092","DOIUrl":null,"url":null,"abstract":"The non-coplanar cross-buried pipelines are a common way of pipeline wiring. In order to investigate the magnetic anomaly characteristics of the non-coplanar cross-buried pipelines and guide the site operation, the influences of a series of factors on the magnetic anomaly of the non-coplanar cross-buried pipelines are analyzed. Based on the principle of magnetic dipole construction, a forward model is established for the magnetic anomaly characteristics of the subsurface non-coplanar cross-buried pipelines. The basic characteristics of magnetic anomaly for the non-coplanar cross-buried pipelines are defined. The influences of geomagnetic parameters (geomagnetic intensity, geomagnetic inclination, and geomagnetic declination), pipeline parameters (thickness, magnetic susceptibility), and cross angle of pipelines on the characteristics of magnetic anomalies are analyzed. The results show that the shape of the total magnetic anomaly is mainly affected by the magnetic inclination, and the curve of magnetic anomaly at ± I site shows some symmetry. The amplitude is approximately linearly affected by the total geomagnetic field, magnetic declination, pipeline thickness, material magnetic susceptibility, and pipeline cross angle. There is a periodic change of the amplitude with the increase of geomagnetic inclination (−90°–>90°). The crest-trough distance is mainly affected by geomagnetic inclination, magnetic declination, thickness, magnetic susceptibility, and pipeline cross angle. A more accurate measurement can be achieved if the direction of the pipelines is roughly measured and then the number of measurement points is augmented near the intersection of pipelines and the measurement lines. Present work obtains the equivalent magnetic dipole units by segmenting pipelines. The magnetic anomaly characteristics of non-coplanar crossed iron pipelines are successfully simulated. The numerical results are in accordance with the experimental analysis.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"1 1","pages":"223-233"},"PeriodicalIF":1.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Magnetic Anomaly Characteristics of Underground Non-Coplanar Cross-buried Iron Pipelines\",\"authors\":\"Pan Wu, Minghui Wei\",\"doi\":\"10.2113/JEEG19-092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-coplanar cross-buried pipelines are a common way of pipeline wiring. In order to investigate the magnetic anomaly characteristics of the non-coplanar cross-buried pipelines and guide the site operation, the influences of a series of factors on the magnetic anomaly of the non-coplanar cross-buried pipelines are analyzed. Based on the principle of magnetic dipole construction, a forward model is established for the magnetic anomaly characteristics of the subsurface non-coplanar cross-buried pipelines. The basic characteristics of magnetic anomaly for the non-coplanar cross-buried pipelines are defined. The influences of geomagnetic parameters (geomagnetic intensity, geomagnetic inclination, and geomagnetic declination), pipeline parameters (thickness, magnetic susceptibility), and cross angle of pipelines on the characteristics of magnetic anomalies are analyzed. The results show that the shape of the total magnetic anomaly is mainly affected by the magnetic inclination, and the curve of magnetic anomaly at ± I site shows some symmetry. The amplitude is approximately linearly affected by the total geomagnetic field, magnetic declination, pipeline thickness, material magnetic susceptibility, and pipeline cross angle. There is a periodic change of the amplitude with the increase of geomagnetic inclination (−90°–>90°). The crest-trough distance is mainly affected by geomagnetic inclination, magnetic declination, thickness, magnetic susceptibility, and pipeline cross angle. A more accurate measurement can be achieved if the direction of the pipelines is roughly measured and then the number of measurement points is augmented near the intersection of pipelines and the measurement lines. Present work obtains the equivalent magnetic dipole units by segmenting pipelines. The magnetic anomaly characteristics of non-coplanar crossed iron pipelines are successfully simulated. The numerical results are in accordance with the experimental analysis.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"1 1\",\"pages\":\"223-233\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/JEEG19-092\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/JEEG19-092","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

摘要

非共面交埋管道是一种常用的管道布线方式。为了研究非共面交埋管道的磁异常特征,指导现场作业,分析了一系列因素对非共面交埋管道磁异常的影响。基于磁偶极子构造原理,建立了地下非共面交埋管道磁异常特征正演模型。定义了非共面交埋管道磁异常的基本特征。分析了地磁参数(地磁强度、地磁倾角、地磁偏角)、管道参数(管道厚度、磁化率)、管道交叉角对地磁异常特征的影响。结果表明,总磁异常的形状主要受磁倾角的影响,±1点的磁异常曲线具有一定的对称性。振幅与总地磁场、磁偏角、管道厚度、材料磁化率和管道交叉角呈近似线性关系。振幅随地磁倾角的增加呈周期性变化(- 90°- >90°)。波谷距离主要受地磁倾角、磁偏角、厚度、磁化率和管道横角的影响。如果对管道方向进行粗略测量,然后在管道与测量线的交点附近增加测点数量,可以获得更精确的测量结果。本文通过分割管道得到等效磁偶极子单元。成功地模拟了非共面交叉铁管道的磁异常特征。数值计算结果与实验分析基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Magnetic Anomaly Characteristics of Underground Non-Coplanar Cross-buried Iron Pipelines
The non-coplanar cross-buried pipelines are a common way of pipeline wiring. In order to investigate the magnetic anomaly characteristics of the non-coplanar cross-buried pipelines and guide the site operation, the influences of a series of factors on the magnetic anomaly of the non-coplanar cross-buried pipelines are analyzed. Based on the principle of magnetic dipole construction, a forward model is established for the magnetic anomaly characteristics of the subsurface non-coplanar cross-buried pipelines. The basic characteristics of magnetic anomaly for the non-coplanar cross-buried pipelines are defined. The influences of geomagnetic parameters (geomagnetic intensity, geomagnetic inclination, and geomagnetic declination), pipeline parameters (thickness, magnetic susceptibility), and cross angle of pipelines on the characteristics of magnetic anomalies are analyzed. The results show that the shape of the total magnetic anomaly is mainly affected by the magnetic inclination, and the curve of magnetic anomaly at ± I site shows some symmetry. The amplitude is approximately linearly affected by the total geomagnetic field, magnetic declination, pipeline thickness, material magnetic susceptibility, and pipeline cross angle. There is a periodic change of the amplitude with the increase of geomagnetic inclination (−90°–>90°). The crest-trough distance is mainly affected by geomagnetic inclination, magnetic declination, thickness, magnetic susceptibility, and pipeline cross angle. A more accurate measurement can be achieved if the direction of the pipelines is roughly measured and then the number of measurement points is augmented near the intersection of pipelines and the measurement lines. Present work obtains the equivalent magnetic dipole units by segmenting pipelines. The magnetic anomaly characteristics of non-coplanar crossed iron pipelines are successfully simulated. The numerical results are in accordance with the experimental analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental and Engineering Geophysics
Journal of Environmental and Engineering Geophysics 地学-地球化学与地球物理
CiteScore
2.70
自引率
0.00%
发文量
13
审稿时长
6 months
期刊介绍: The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.
期刊最新文献
Applications and Analytical Methods of Ground Penetrating Radar for Soil Characterization in a Silvopastoral System Introduction to the Journal of Environmental and Engineering Geophysics Special Issue on the Application of Proximal and Remote Sensing Technologies to Soil Investigations Integrated Agrogeophysical Approach for Investigating Soil Pipes in Agricultural Fields Automated Segmentation Framework for Asphalt Layer Thickness from GPR Data Using a Cascaded k-Means - DBSCAN Algorithm Continuous Automatic Estimation of Volumetric Water Content Profile During Infiltration Using Sparse Multi-Offset GPR Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1