{"title":"带有缺陷的阶梯纳米梁的自然振动","authors":"J. Lellep, A. Lenbaum","doi":"10.12697/ACUTM.2019.23.14","DOIUrl":null,"url":null,"abstract":"Exact solutions for the transverse vibration of nanobeams based on the nonlocal theory of elasticity are presented. The nanobeams under consideration have piecewise constant dimensions of cross sections and are weakened with crack-like defects. It is assumed that the stationary cracks occur at the re-entrant corners of steps and that the mechanical behaviour of the nanomaterial can be modelled with the Eringen's nonlocal theory. The influence of cracks on the natural vibration is prescribed with the aid of additional local compliance at the weakened cross section. The local compliance is coupled with the stress intensity factor at the crack tip. A general algorithm for determination of eigenfrequencies is developed. It can be used in the case of an arbitrary finite number of steps and cracks.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Natural vibrations of stepped nanobeams with defects\",\"authors\":\"J. Lellep, A. Lenbaum\",\"doi\":\"10.12697/ACUTM.2019.23.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exact solutions for the transverse vibration of nanobeams based on the nonlocal theory of elasticity are presented. The nanobeams under consideration have piecewise constant dimensions of cross sections and are weakened with crack-like defects. It is assumed that the stationary cracks occur at the re-entrant corners of steps and that the mechanical behaviour of the nanomaterial can be modelled with the Eringen's nonlocal theory. The influence of cracks on the natural vibration is prescribed with the aid of additional local compliance at the weakened cross section. The local compliance is coupled with the stress intensity factor at the crack tip. A general algorithm for determination of eigenfrequencies is developed. It can be used in the case of an arbitrary finite number of steps and cracks.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2019.23.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2019.23.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Natural vibrations of stepped nanobeams with defects
Exact solutions for the transverse vibration of nanobeams based on the nonlocal theory of elasticity are presented. The nanobeams under consideration have piecewise constant dimensions of cross sections and are weakened with crack-like defects. It is assumed that the stationary cracks occur at the re-entrant corners of steps and that the mechanical behaviour of the nanomaterial can be modelled with the Eringen's nonlocal theory. The influence of cracks on the natural vibration is prescribed with the aid of additional local compliance at the weakened cross section. The local compliance is coupled with the stress intensity factor at the crack tip. A general algorithm for determination of eigenfrequencies is developed. It can be used in the case of an arbitrary finite number of steps and cracks.