自适应k值k均值聚类算法

Wang Shenghui, Liang Hanbing
{"title":"自适应k值k均值聚类算法","authors":"Wang Shenghui, Liang Hanbing","doi":"10.1109/ICMCCE51767.2020.00316","DOIUrl":null,"url":null,"abstract":"Based on particle swarm optimization (PSO), the algorithm for selecting appropriate K values is improved by combining k-mean algorithm. When the algorithm converges, the expansion and reduction of K value can be determined by comparing the relationship between different K value selection and global optimal fitness. Experiments show that the improved algorithm can assist K value selection effectively and obtain a better clustering effect.","PeriodicalId":6712,"journal":{"name":"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","volume":"9 1","pages":"1442-1445"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive K-valued K-means clustering algorithm\",\"authors\":\"Wang Shenghui, Liang Hanbing\",\"doi\":\"10.1109/ICMCCE51767.2020.00316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on particle swarm optimization (PSO), the algorithm for selecting appropriate K values is improved by combining k-mean algorithm. When the algorithm converges, the expansion and reduction of K value can be determined by comparing the relationship between different K value selection and global optimal fitness. Experiments show that the improved algorithm can assist K value selection effectively and obtain a better clustering effect.\",\"PeriodicalId\":6712,\"journal\":{\"name\":\"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"volume\":\"9 1\",\"pages\":\"1442-1445\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMCCE51767.2020.00316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCCE51767.2020.00316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在粒子群算法(PSO)的基础上,结合K均值算法对K值选取算法进行了改进。当算法收敛时,可以通过比较不同K值选择与全局最优适应度之间的关系来确定K值的展开和缩小。实验表明,改进后的算法可以有效地辅助K值的选择,获得更好的聚类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive K-valued K-means clustering algorithm
Based on particle swarm optimization (PSO), the algorithm for selecting appropriate K values is improved by combining k-mean algorithm. When the algorithm converges, the expansion and reduction of K value can be determined by comparing the relationship between different K value selection and global optimal fitness. Experiments show that the improved algorithm can assist K value selection effectively and obtain a better clustering effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Analysis of Trajectory Control of Tire Bursting Vehicles Based on MPC Research on the Influence of Computer Application on Regional Economic Development Research on Intelligent Analysis Technology of Power Monitoring Video Data Based on Convolutional Neural Network Transmit digital multi-beam forming based on hyperbolic fractional delay filter An Improved Image Entropy Algorithm Suitable for Digital Painting Style
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1