混凝土自愈的热力学模型的限制和可能性

Daniel Lahmann, S. Kessler
{"title":"混凝土自愈的热力学模型的限制和可能性","authors":"Daniel Lahmann, S. Kessler","doi":"10.1051/matecconf/202337809003","DOIUrl":null,"url":null,"abstract":"Autogenous self-healing of water retaining concrete structures is included in Eurocode 1992-3 as a possibility to heal cracks up to a width of 200 μm without additional repair. In this self-healing scenario water flow through a crack should result in a progressive closure of the fracture, mainly due to CaCO3 precipitation, when certain hydraulic gradients are met, the pH of the water is > 5.5 and the concentration of CO2 in the water remains < 40 mg*L-1. The material composition is not further restricted by the regulation. However, despite standardization, the healing effect seems to be random in practice, which requires further research, while experiments aimed at quantifying autogenous self-healing are expensive and time-consuming. Thermodynamic models could support in estimating the effect of different environments such as groundwater or seawater exposure on autogenous self-healing. Moreover, adjusting the water chemistry according to the conditions of different construction sites and changing the material design could easily be considered. In this study thermodynamic models of a hydrated CEM I 52.5 R paste that is exposed to either simulated groundwater or seawater are discussed concerning the influence on autogenous self-healing and compared to experimental and literature data.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limits and possibilities of thermodynamic modelling of autogenous self-healing of concrete\",\"authors\":\"Daniel Lahmann, S. Kessler\",\"doi\":\"10.1051/matecconf/202337809003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autogenous self-healing of water retaining concrete structures is included in Eurocode 1992-3 as a possibility to heal cracks up to a width of 200 μm without additional repair. In this self-healing scenario water flow through a crack should result in a progressive closure of the fracture, mainly due to CaCO3 precipitation, when certain hydraulic gradients are met, the pH of the water is > 5.5 and the concentration of CO2 in the water remains < 40 mg*L-1. The material composition is not further restricted by the regulation. However, despite standardization, the healing effect seems to be random in practice, which requires further research, while experiments aimed at quantifying autogenous self-healing are expensive and time-consuming. Thermodynamic models could support in estimating the effect of different environments such as groundwater or seawater exposure on autogenous self-healing. Moreover, adjusting the water chemistry according to the conditions of different construction sites and changing the material design could easily be considered. In this study thermodynamic models of a hydrated CEM I 52.5 R paste that is exposed to either simulated groundwater or seawater are discussed concerning the influence on autogenous self-healing and compared to experimental and literature data.\",\"PeriodicalId\":18309,\"journal\":{\"name\":\"MATEC Web of Conferences\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATEC Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/matecconf/202337809003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337809003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

欧洲规范1992-3中包含了自愈水混凝土结构的可能性,即愈合宽度达200 μm的裂缝而无需额外修复。在这种自愈情景中,水流通过裂缝会导致裂缝逐渐闭合,这主要是由于CaCO3的沉淀,当满足一定的水力梯度时,水的pH值> 5.5,水中CO2浓度保持在< 40 mg*L-1。该法规没有进一步限制材料成分。然而,尽管标准化,但在实践中愈合效果似乎是随机的,这需要进一步研究,而旨在量化自愈的实验既昂贵又耗时。热力学模型可支持估算不同环境(如地下水或海水)对自愈的影响。此外,还可以考虑根据不同施工场地的条件调整水化学成分,改变材料设计。本研究讨论了水合CEM I 52.5 R膏体暴露于模拟地下水或海水中的热力学模型,并与实验和文献数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Limits and possibilities of thermodynamic modelling of autogenous self-healing of concrete
Autogenous self-healing of water retaining concrete structures is included in Eurocode 1992-3 as a possibility to heal cracks up to a width of 200 μm without additional repair. In this self-healing scenario water flow through a crack should result in a progressive closure of the fracture, mainly due to CaCO3 precipitation, when certain hydraulic gradients are met, the pH of the water is > 5.5 and the concentration of CO2 in the water remains < 40 mg*L-1. The material composition is not further restricted by the regulation. However, despite standardization, the healing effect seems to be random in practice, which requires further research, while experiments aimed at quantifying autogenous self-healing are expensive and time-consuming. Thermodynamic models could support in estimating the effect of different environments such as groundwater or seawater exposure on autogenous self-healing. Moreover, adjusting the water chemistry according to the conditions of different construction sites and changing the material design could easily be considered. In this study thermodynamic models of a hydrated CEM I 52.5 R paste that is exposed to either simulated groundwater or seawater are discussed concerning the influence on autogenous self-healing and compared to experimental and literature data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
342
审稿时长
6 weeks
期刊介绍: MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.
期刊最新文献
Classification of intracranial hemorrhage (CT) images using CNN-LSTM method and image-based GLCM features Study of pathways to reduce the energy consumption of the CO2 capture process by absorption-regeneration Optimizations of the internal structure of the reel of a double rope winder The Performance and Cost Analysis on Bio Fuel Blends for Internal Combustion Engine Physicochemical studies of composite coatings during accelerated tests for atmospheric corrosion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1