Okwuenu Pc, Agbo Ku, A. L. Ezugwu, S. Eze, F. Chilaka
{"title":"二价金属离子对黑曲霉葡萄糖淀粉酶活性的影响","authors":"Okwuenu Pc, Agbo Ku, A. L. Ezugwu, S. Eze, F. Chilaka","doi":"10.4172/2167-7972.1000141","DOIUrl":null,"url":null,"abstract":"This study investigates the production of glucoamylase from Aspergillus niger in a submerged fermentation process using amylopectin fractionated from guinea corn starch as the carbon source. This work also studies the effect of a few metal ions (Ca2+, Zn2+, Co2+, Fe2+, Mn2+ and Pb2+) concentration on the glucoamylase activity. A Fourteen day experimental study was carried out to determine the day of highest glucoamylase activity. Maximum glucoamylase activity was observed on day five of the submerged fermentation; hence, day five was mass produced. The specific activity for the crude enzyme was found to be 729.45 U/mg. The crude enzyme was purified to the level of gel filtration (using sephadex G-100) via ammonium sulphate precipitation. Ammonium sulphate saturation of 70% was found suitable to precipitate the enzyme. After ammonium sulphate precipitation and gel filtration, the specific activities were found to be 65.98 U/mg and 180.52 U/mg respectively. The glucoamylase activity was enhanced by 2 mM to 5 mM of Ca2+, Co2+, Fe2+, Mn2+and Zn2+ but Pb2+ had inhibitory effect on the enzyme. The Michaelis constant, Km and maximum velocity Vmax of the enzyme was obtained from the Lineweaver-Burk plot of initial velocity data at different substrate concentrations. They were found to be 770.75 mg/ml and 2500 μmol/min respectively, when using cassava starch as substrate. The enzyme glucoamylase is known to have useful applications in food processing industries and fermentation biotechnology","PeriodicalId":12351,"journal":{"name":"Fermentation Technology","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Effect of Divalent Metal Ions on Glucoamylase Activity of Glucoamylase Isolated from Aspergillus niger\",\"authors\":\"Okwuenu Pc, Agbo Ku, A. L. Ezugwu, S. Eze, F. Chilaka\",\"doi\":\"10.4172/2167-7972.1000141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the production of glucoamylase from Aspergillus niger in a submerged fermentation process using amylopectin fractionated from guinea corn starch as the carbon source. This work also studies the effect of a few metal ions (Ca2+, Zn2+, Co2+, Fe2+, Mn2+ and Pb2+) concentration on the glucoamylase activity. A Fourteen day experimental study was carried out to determine the day of highest glucoamylase activity. Maximum glucoamylase activity was observed on day five of the submerged fermentation; hence, day five was mass produced. The specific activity for the crude enzyme was found to be 729.45 U/mg. The crude enzyme was purified to the level of gel filtration (using sephadex G-100) via ammonium sulphate precipitation. Ammonium sulphate saturation of 70% was found suitable to precipitate the enzyme. After ammonium sulphate precipitation and gel filtration, the specific activities were found to be 65.98 U/mg and 180.52 U/mg respectively. The glucoamylase activity was enhanced by 2 mM to 5 mM of Ca2+, Co2+, Fe2+, Mn2+and Zn2+ but Pb2+ had inhibitory effect on the enzyme. The Michaelis constant, Km and maximum velocity Vmax of the enzyme was obtained from the Lineweaver-Burk plot of initial velocity data at different substrate concentrations. They were found to be 770.75 mg/ml and 2500 μmol/min respectively, when using cassava starch as substrate. The enzyme glucoamylase is known to have useful applications in food processing industries and fermentation biotechnology\",\"PeriodicalId\":12351,\"journal\":{\"name\":\"Fermentation Technology\",\"volume\":\"10 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2167-7972.1000141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2167-7972.1000141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Divalent Metal Ions on Glucoamylase Activity of Glucoamylase Isolated from Aspergillus niger
This study investigates the production of glucoamylase from Aspergillus niger in a submerged fermentation process using amylopectin fractionated from guinea corn starch as the carbon source. This work also studies the effect of a few metal ions (Ca2+, Zn2+, Co2+, Fe2+, Mn2+ and Pb2+) concentration on the glucoamylase activity. A Fourteen day experimental study was carried out to determine the day of highest glucoamylase activity. Maximum glucoamylase activity was observed on day five of the submerged fermentation; hence, day five was mass produced. The specific activity for the crude enzyme was found to be 729.45 U/mg. The crude enzyme was purified to the level of gel filtration (using sephadex G-100) via ammonium sulphate precipitation. Ammonium sulphate saturation of 70% was found suitable to precipitate the enzyme. After ammonium sulphate precipitation and gel filtration, the specific activities were found to be 65.98 U/mg and 180.52 U/mg respectively. The glucoamylase activity was enhanced by 2 mM to 5 mM of Ca2+, Co2+, Fe2+, Mn2+and Zn2+ but Pb2+ had inhibitory effect on the enzyme. The Michaelis constant, Km and maximum velocity Vmax of the enzyme was obtained from the Lineweaver-Burk plot of initial velocity data at different substrate concentrations. They were found to be 770.75 mg/ml and 2500 μmol/min respectively, when using cassava starch as substrate. The enzyme glucoamylase is known to have useful applications in food processing industries and fermentation biotechnology