{"title":"稀疏分布计算的优化","authors":"O. Hamdi-Larbi","doi":"10.4018/ijghpc.301586","DOIUrl":null,"url":null,"abstract":"We address the problem of the optimization of sparse matrix-vector product (SpMV) on homogeneous distributed systems. For this purpose, we propose three approaches based on partitioning the matrix into row blocks. These blocks are defined by a set of a fixed number of rows and a set of contiguous (resp. non-contiguous) rows containing a fixed number of non-zero elements. These approaches lead to solve some specific NP-hard scheduling problems. Thus, adequate heuristics are designed. We analyse the theoretical performance of the proposed approaches and validate them by a series of experiments. This work represents an important step in an overall objective which is to determine the best-balanced distribution for the SpMV computation on a distributed system. In order to validate our approaches for sparse matrix distribution, we compare them to hypergraph model as well as to PETSc library for SpMV distribution on a homogenous multicore cluster. Experimentations show that our approaches provide performances 2 times better than hypergraph and 49 times better than PETSc.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"5 1","pages":"1-18"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Sparse Distributed Computations\",\"authors\":\"O. Hamdi-Larbi\",\"doi\":\"10.4018/ijghpc.301586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of the optimization of sparse matrix-vector product (SpMV) on homogeneous distributed systems. For this purpose, we propose three approaches based on partitioning the matrix into row blocks. These blocks are defined by a set of a fixed number of rows and a set of contiguous (resp. non-contiguous) rows containing a fixed number of non-zero elements. These approaches lead to solve some specific NP-hard scheduling problems. Thus, adequate heuristics are designed. We analyse the theoretical performance of the proposed approaches and validate them by a series of experiments. This work represents an important step in an overall objective which is to determine the best-balanced distribution for the SpMV computation on a distributed system. In order to validate our approaches for sparse matrix distribution, we compare them to hypergraph model as well as to PETSc library for SpMV distribution on a homogenous multicore cluster. Experimentations show that our approaches provide performances 2 times better than hypergraph and 49 times better than PETSc.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"5 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijghpc.301586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.301586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We address the problem of the optimization of sparse matrix-vector product (SpMV) on homogeneous distributed systems. For this purpose, we propose three approaches based on partitioning the matrix into row blocks. These blocks are defined by a set of a fixed number of rows and a set of contiguous (resp. non-contiguous) rows containing a fixed number of non-zero elements. These approaches lead to solve some specific NP-hard scheduling problems. Thus, adequate heuristics are designed. We analyse the theoretical performance of the proposed approaches and validate them by a series of experiments. This work represents an important step in an overall objective which is to determine the best-balanced distribution for the SpMV computation on a distributed system. In order to validate our approaches for sparse matrix distribution, we compare them to hypergraph model as well as to PETSc library for SpMV distribution on a homogenous multicore cluster. Experimentations show that our approaches provide performances 2 times better than hypergraph and 49 times better than PETSc.