最小加权范数与核插值的泛化误差

IF 1.9 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2020-08-07 DOI:10.1137/20M1359912
Weilin Li
{"title":"最小加权范数与核插值的泛化误差","authors":"Weilin Li","doi":"10.1137/20M1359912","DOIUrl":null,"url":null,"abstract":"We study the generalization error of functions that interpolate prescribed data points and are selected by minimizing a weighted norm. Under natural and general conditions, we prove that both the interpolants and their generalization errors converge as the number of parameters grow, and the limiting interpolant belongs to a reproducing kernel Hilbert space. This rigorously establishes an implicit bias of minimum weighted norm interpolation and explains why norm minimization may benefit from over-parameterization. As special cases of this theory, we study interpolation by trigonometric polynomials and spherical harmonics. Our approach is from a deterministic and approximation theory viewpoint, as opposed a statistical or random matrix one.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"199 1","pages":"414-438"},"PeriodicalIF":1.9000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generalization error of minimum weighted norm and kernel interpolation\",\"authors\":\"Weilin Li\",\"doi\":\"10.1137/20M1359912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the generalization error of functions that interpolate prescribed data points and are selected by minimizing a weighted norm. Under natural and general conditions, we prove that both the interpolants and their generalization errors converge as the number of parameters grow, and the limiting interpolant belongs to a reproducing kernel Hilbert space. This rigorously establishes an implicit bias of minimum weighted norm interpolation and explains why norm minimization may benefit from over-parameterization. As special cases of this theory, we study interpolation by trigonometric polynomials and spherical harmonics. Our approach is from a deterministic and approximation theory viewpoint, as opposed a statistical or random matrix one.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"199 1\",\"pages\":\"414-438\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20M1359912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20M1359912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了插值指定数据点的函数的泛化误差,并通过最小化加权范数来选择。在自然条件和一般条件下,我们证明了插值量及其泛化误差随着参数数目的增加而收敛,并且证明了极限插值量属于可复制核Hilbert空间。这严格地建立了最小加权范数插值的隐式偏差,并解释了为什么范数最小化可能受益于过度参数化。作为该理论的特例,我们研究了三角多项式和球谐插值。我们的方法是从确定性和近似理论的观点出发,而不是从统计或随机矩阵的观点出发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalization error of minimum weighted norm and kernel interpolation
We study the generalization error of functions that interpolate prescribed data points and are selected by minimizing a weighted norm. Under natural and general conditions, we prove that both the interpolants and their generalization errors converge as the number of parameters grow, and the limiting interpolant belongs to a reproducing kernel Hilbert space. This rigorously establishes an implicit bias of minimum weighted norm interpolation and explains why norm minimization may benefit from over-parameterization. As special cases of this theory, we study interpolation by trigonometric polynomials and spherical harmonics. Our approach is from a deterministic and approximation theory viewpoint, as opposed a statistical or random matrix one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors The GenCol Algorithm for High-Dimensional Optimal Transport: General Formulation and Application to Barycenters and Wasserstein Splines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1