基于进化算法的联合信道参数估计

Wei Li, Q. Ni
{"title":"基于进化算法的联合信道参数估计","authors":"Wei Li, Q. Ni","doi":"10.1109/ICC.2010.5502478","DOIUrl":null,"url":null,"abstract":"This paper proposes to utilise Evolutionary Algorithm (EA) to jointly estimate the Time of Arrival, Direction of Arrival, and amplitude of impinging waves in a mobile radio environment. The problem is presented as the joint Maximum Likelihood (ML) estimation of the channel parameters where typically, the high dimensional non-linear cost function is deemed to be too computationally expensive to be solved directly. Simulation results show that the proposed method is extremely robust to initialisation errors and low SNR environments, while at the same time it is also computationally more efficient than popular iterative ML methods i.e. the Space-Alternating Generalised Expectation-maximisation (SAGE) algorithm.","PeriodicalId":6405,"journal":{"name":"2010 IEEE International Conference on Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Joint Channel Parameter Estimation Using Evolutionary Algorithm\",\"authors\":\"Wei Li, Q. Ni\",\"doi\":\"10.1109/ICC.2010.5502478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to utilise Evolutionary Algorithm (EA) to jointly estimate the Time of Arrival, Direction of Arrival, and amplitude of impinging waves in a mobile radio environment. The problem is presented as the joint Maximum Likelihood (ML) estimation of the channel parameters where typically, the high dimensional non-linear cost function is deemed to be too computationally expensive to be solved directly. Simulation results show that the proposed method is extremely robust to initialisation errors and low SNR environments, while at the same time it is also computationally more efficient than popular iterative ML methods i.e. the Space-Alternating Generalised Expectation-maximisation (SAGE) algorithm.\",\"PeriodicalId\":6405,\"journal\":{\"name\":\"2010 IEEE International Conference on Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2010.5502478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2010.5502478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出利用进化算法(EA)联合估计移动无线电环境中入射波的到达时间、到达方向和振幅。该问题以通道参数的联合最大似然估计(ML)的形式提出,其中高维非线性代价函数通常被认为计算成本太高而无法直接解决。仿真结果表明,该方法对初始化误差和低信噪比环境具有极强的鲁棒性,同时在计算效率上也优于流行的迭代ML方法,即空间交替广义期望最大化(SAGE)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Channel Parameter Estimation Using Evolutionary Algorithm
This paper proposes to utilise Evolutionary Algorithm (EA) to jointly estimate the Time of Arrival, Direction of Arrival, and amplitude of impinging waves in a mobile radio environment. The problem is presented as the joint Maximum Likelihood (ML) estimation of the channel parameters where typically, the high dimensional non-linear cost function is deemed to be too computationally expensive to be solved directly. Simulation results show that the proposed method is extremely robust to initialisation errors and low SNR environments, while at the same time it is also computationally more efficient than popular iterative ML methods i.e. the Space-Alternating Generalised Expectation-maximisation (SAGE) algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimal Server Selection Algorithm for P2P IPTV over Fiber to the Node (FTTN) Networks Joint Discrete Power-Level and Delay Optimization for Network Coded Wireless Communications Throughput and Stability Improvements of Slotted ALOHA Based Wireless Networks under the Random Packet Destruction Dos Attack TOA Based Joint Synchronization and Localization Amplify-And-Forward MIMO Relaying with OSTBC over Nakagami-m Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1