基于融合自回归自编码器的变化工况下机器异常检测

Jingyao Wu, Zhibin Zhao, Hongbing Shang, Chuang Sun, Ruqiang Yan, Xuefeng Chen
{"title":"基于融合自回归自编码器的变化工况下机器异常检测","authors":"Jingyao Wu, Zhibin Zhao, Hongbing Shang, Chuang Sun, Ruqiang Yan, Xuefeng Chen","doi":"10.1109/I2MTC50364.2021.9460002","DOIUrl":null,"url":null,"abstract":"Condition monitoring is one of the key tasks for the intelligent maintenance of high-end equipment. Facing the challenge of its changing working conditions, intelligent monitoring models that are built upon constant working conditions are not qualified for this task. To solve this problem, a syncretic self-regression variational auto-encoder (SSR-VAE) model is proposed to realize the parallel training of distribution learning and regression learning for machine anomaly detection. Among them, self-regression learning plays an auxiliary role in distribution learning. Furthermore, multi-sensor information fusion at the decision level is implemented to improve the robustness of the proposed model. The effectiveness of this model is evaluated on a gearbox test platform under changing working conditions.","PeriodicalId":6772,"journal":{"name":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"24 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Anomaly Detection under Changing Working Condition with Syncretic Self-Regression Auto-Encoder\",\"authors\":\"Jingyao Wu, Zhibin Zhao, Hongbing Shang, Chuang Sun, Ruqiang Yan, Xuefeng Chen\",\"doi\":\"10.1109/I2MTC50364.2021.9460002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Condition monitoring is one of the key tasks for the intelligent maintenance of high-end equipment. Facing the challenge of its changing working conditions, intelligent monitoring models that are built upon constant working conditions are not qualified for this task. To solve this problem, a syncretic self-regression variational auto-encoder (SSR-VAE) model is proposed to realize the parallel training of distribution learning and regression learning for machine anomaly detection. Among them, self-regression learning plays an auxiliary role in distribution learning. Furthermore, multi-sensor information fusion at the decision level is implemented to improve the robustness of the proposed model. The effectiveness of this model is evaluated on a gearbox test platform under changing working conditions.\",\"PeriodicalId\":6772,\"journal\":{\"name\":\"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"24 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC50364.2021.9460002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC50364.2021.9460002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

状态监测是高端装备智能化维修的关键任务之一。面对其不断变化的工况挑战,建立在恒定工况基础上的智能监控模型已无法胜任这一任务。针对这一问题,提出了一种融合自回归变分自编码器(SSR-VAE)模型,实现了机器异常检测中分布学习和回归学习的并行训练。其中,自回归学习在分布学习中起辅助作用。在决策层进行多传感器信息融合,提高了模型的鲁棒性。在某齿轮箱试验平台上对该模型在不同工况下的有效性进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Anomaly Detection under Changing Working Condition with Syncretic Self-Regression Auto-Encoder
Condition monitoring is one of the key tasks for the intelligent maintenance of high-end equipment. Facing the challenge of its changing working conditions, intelligent monitoring models that are built upon constant working conditions are not qualified for this task. To solve this problem, a syncretic self-regression variational auto-encoder (SSR-VAE) model is proposed to realize the parallel training of distribution learning and regression learning for machine anomaly detection. Among them, self-regression learning plays an auxiliary role in distribution learning. Furthermore, multi-sensor information fusion at the decision level is implemented to improve the robustness of the proposed model. The effectiveness of this model is evaluated on a gearbox test platform under changing working conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microwave Quantification of Porosity Level in 3D Printed Polymers Fast Transient Harmonic Selective Extraction Based on Modulation-CDSC-SDFT A UWB-based localization system: analysis of the effect of anchor positions and robustness enhancement in indoor environments Miniaturised bidirectional acoustic tag to enhance marine animal tracking studies Overload Current Interruption Protection Method based on Tunnel Magnetoresistive Sensor Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1