CoxNiy薄膜的电沉积及其对乙醇电氧化的催化活性

Hilman Syafei, Dwi Giwang Kurniawan
{"title":"CoxNiy薄膜的电沉积及其对乙醇电氧化的催化活性","authors":"Hilman Syafei, Dwi Giwang Kurniawan","doi":"10.56425/cma.v2i1.50","DOIUrl":null,"url":null,"abstract":"Platinum is often used as a catalyst in ethanol electrooxidation. Still, it has many disadvantages being expensive and its active site can be poisoned by CO. Transition metal of Co and Ni can become a catalyst in alcohol electrooxidation at a lower cost to synthesize. In this work, bimetallic CoNi were successfully prepared by electrodeposition method with different Co/Ni ratios to enhance ethanol electrooxidation. Samples of CoNi are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and electrochemical impedance spectroscopy (EIS). XRD diffractogram confirmed the formation of CoNi. Morphology of CoNi in SEM characterization showed that CoNi with ratio 5:1 has the more dispersed particle and the greatest surface area. EDX characterization indicated that the relative weight of different Co/Ni ratios, the composition wt.% Co is 81.15% and wt.% Ni is 18.85% in CoNi 5:1, wt.% Co is 60.96% and wt.% Ni is 30.94% in CoNi 2:5, while wt.% Co is 50.19%, and wt.% Ni is 49.81% in CoNi 5:5. EIS characterization showed that CoNi with ratio of 5:1 has faster electron kinetics. Electrooxidation of ethanol used cyclic voltammetry (CV) method. The best results from the ethanol electrooxidation reaction were obtained for CoNi with a ratio of 5:1 because of the greatest surface area that showed in scanning electron microscopy and fast electron transfer kinetics compared to others ratio of CoxNiy.","PeriodicalId":9724,"journal":{"name":"chemistry and materials research","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrodeposition of CoxNiy Thin Film and Its Catalytic Activity for Ethanol Electrooxidation\",\"authors\":\"Hilman Syafei, Dwi Giwang Kurniawan\",\"doi\":\"10.56425/cma.v2i1.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Platinum is often used as a catalyst in ethanol electrooxidation. Still, it has many disadvantages being expensive and its active site can be poisoned by CO. Transition metal of Co and Ni can become a catalyst in alcohol electrooxidation at a lower cost to synthesize. In this work, bimetallic CoNi were successfully prepared by electrodeposition method with different Co/Ni ratios to enhance ethanol electrooxidation. Samples of CoNi are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and electrochemical impedance spectroscopy (EIS). XRD diffractogram confirmed the formation of CoNi. Morphology of CoNi in SEM characterization showed that CoNi with ratio 5:1 has the more dispersed particle and the greatest surface area. EDX characterization indicated that the relative weight of different Co/Ni ratios, the composition wt.% Co is 81.15% and wt.% Ni is 18.85% in CoNi 5:1, wt.% Co is 60.96% and wt.% Ni is 30.94% in CoNi 2:5, while wt.% Co is 50.19%, and wt.% Ni is 49.81% in CoNi 5:5. EIS characterization showed that CoNi with ratio of 5:1 has faster electron kinetics. Electrooxidation of ethanol used cyclic voltammetry (CV) method. The best results from the ethanol electrooxidation reaction were obtained for CoNi with a ratio of 5:1 because of the greatest surface area that showed in scanning electron microscopy and fast electron transfer kinetics compared to others ratio of CoxNiy.\",\"PeriodicalId\":9724,\"journal\":{\"name\":\"chemistry and materials research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"chemistry and materials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56425/cma.v2i1.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"chemistry and materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56425/cma.v2i1.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

铂常被用作乙醇电氧化的催化剂。但它的缺点是价格昂贵,活性位点容易被CO毒害。CO和Ni的过渡金属可以以较低的合成成本成为醇电氧化的催化剂。采用电沉积法制备了不同Co/Ni比的双金属CoNi,提高了乙醇的电氧化性能。采用x射线衍射(XRD)、扫描电镜(SEM)、能量色散x射线(EDX)和电化学阻抗谱(EIS)对样品进行了表征。XRD衍射图证实了CoNi的形成。SEM表征表明,比例为5:1的CoNi颗粒更分散,比表面积最大。EDX表征表明,不同Co/Ni比的相对重量,在CoNi 5:1条件下,wt.% Co为81.15%,wt.% Ni为18.85%;在CoNi 2:5条件下,wt.% Co为60.96%,wt.% Ni为30.94%;在CoNi 5:5条件下,wt.% Co为50.19%,wt.% Ni为49.81%。EIS表征表明,比例为5:1的CoNi具有更快的电子动力学。采用循环伏安法对乙醇进行电氧化。与其他比例的CoxNiy相比,比例为5:1的CoxNiy具有最大的扫描电镜表面积和快速的电子传递动力学,因此乙醇电氧化反应的效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrodeposition of CoxNiy Thin Film and Its Catalytic Activity for Ethanol Electrooxidation
Platinum is often used as a catalyst in ethanol electrooxidation. Still, it has many disadvantages being expensive and its active site can be poisoned by CO. Transition metal of Co and Ni can become a catalyst in alcohol electrooxidation at a lower cost to synthesize. In this work, bimetallic CoNi were successfully prepared by electrodeposition method with different Co/Ni ratios to enhance ethanol electrooxidation. Samples of CoNi are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and electrochemical impedance spectroscopy (EIS). XRD diffractogram confirmed the formation of CoNi. Morphology of CoNi in SEM characterization showed that CoNi with ratio 5:1 has the more dispersed particle and the greatest surface area. EDX characterization indicated that the relative weight of different Co/Ni ratios, the composition wt.% Co is 81.15% and wt.% Ni is 18.85% in CoNi 5:1, wt.% Co is 60.96% and wt.% Ni is 30.94% in CoNi 2:5, while wt.% Co is 50.19%, and wt.% Ni is 49.81% in CoNi 5:5. EIS characterization showed that CoNi with ratio of 5:1 has faster electron kinetics. Electrooxidation of ethanol used cyclic voltammetry (CV) method. The best results from the ethanol electrooxidation reaction were obtained for CoNi with a ratio of 5:1 because of the greatest surface area that showed in scanning electron microscopy and fast electron transfer kinetics compared to others ratio of CoxNiy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electrodeposition of CoNi Bimetallic Catalyst for Ethanol Electrooxidation Application Enhancing Antioxidant Activity of Curcumin Using ZnO Nanoparticles Synthesized by Electrodeposition Method Nickel Oxide (NiO) Thin Film Synthesis via Electrodeposition for Methylene Blue Photodegradation Synthesis of CoNi by Electrodeposition Technique and its Application as an Electrocatalyst for Water Splitting Synthesis and Characterization of Nanocube Cu2O Thin Film at Room Temperature for Methylene Blue Photodegradation Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1