对抗性重编程的状态检测

Yang Zheng, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Maura Pintor, Ambra Demontis, B. Biggio, F. Roli
{"title":"对抗性重编程的状态检测","authors":"Yang Zheng, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Maura Pintor, Ambra Demontis, B. Biggio, F. Roli","doi":"10.48550/arXiv.2211.02885","DOIUrl":null,"url":null,"abstract":"Adversarial reprogramming allows stealing computational resources by repurposing machine learning models to perform a different task chosen by the attacker. For example, a model trained to recognize images of animals can be reprogrammed to recognize medical images by embedding an adversarial program in the images provided as inputs. This attack can be perpetrated even if the target model is a black box, supposed that the machine-learning model is provided as a service and the attacker can query the model and collect its outputs. So far, no defense has been demonstrated effective in this scenario. We show for the first time that this attack is detectable using stateful defenses, which store the queries made to the classifier and detect the abnormal cases in which they are similar. Once a malicious query is detected, the account of the user who made it can be blocked. Thus, the attacker must create many accounts to perpetrate the attack. To decrease this number, the attacker could create the adversarial program against a surrogate classifier and then fine-tune it by making few queries to the target model. In this scenario, the effectiveness of the stateful defense is reduced, but we show that it is still effective.","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"21 1","pages":"119093"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stateful Detection of Adversarial Reprogramming\",\"authors\":\"Yang Zheng, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Maura Pintor, Ambra Demontis, B. Biggio, F. Roli\",\"doi\":\"10.48550/arXiv.2211.02885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial reprogramming allows stealing computational resources by repurposing machine learning models to perform a different task chosen by the attacker. For example, a model trained to recognize images of animals can be reprogrammed to recognize medical images by embedding an adversarial program in the images provided as inputs. This attack can be perpetrated even if the target model is a black box, supposed that the machine-learning model is provided as a service and the attacker can query the model and collect its outputs. So far, no defense has been demonstrated effective in this scenario. We show for the first time that this attack is detectable using stateful defenses, which store the queries made to the classifier and detect the abnormal cases in which they are similar. Once a malicious query is detected, the account of the user who made it can be blocked. Thus, the attacker must create many accounts to perpetrate the attack. To decrease this number, the attacker could create the adversarial program against a surrogate classifier and then fine-tune it by making few queries to the target model. In this scenario, the effectiveness of the stateful defense is reduced, but we show that it is still effective.\",\"PeriodicalId\":13641,\"journal\":{\"name\":\"Inf. Sci.\",\"volume\":\"21 1\",\"pages\":\"119093\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.02885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.02885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对抗性重编程允许通过重新利用机器学习模型来执行攻击者选择的不同任务来窃取计算资源。例如,一个被训练来识别动物图像的模型,可以通过在作为输入的图像中嵌入一个对抗程序来重新编程,以识别医学图像。即使目标模型是黑盒,也可以实施这种攻击,假设机器学习模型作为服务提供,攻击者可以查询模型并收集其输出。到目前为止,在这种情况下,没有任何防御被证明是有效的。我们首次展示了使用有状态防御可以检测到这种攻击,有状态防御存储对分类器的查询,并检测它们相似的异常情况。一旦检测到恶意查询,可以阻止提出该查询的用户的帐户。因此,攻击者必须创建许多帐户才能进行攻击。为了减少这个数字,攻击者可以针对代理分类器创建对抗性程序,然后通过对目标模型进行少量查询来对其进行微调。在这个场景中,状态防御的有效性降低了,但我们证明它仍然有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stateful Detection of Adversarial Reprogramming
Adversarial reprogramming allows stealing computational resources by repurposing machine learning models to perform a different task chosen by the attacker. For example, a model trained to recognize images of animals can be reprogrammed to recognize medical images by embedding an adversarial program in the images provided as inputs. This attack can be perpetrated even if the target model is a black box, supposed that the machine-learning model is provided as a service and the attacker can query the model and collect its outputs. So far, no defense has been demonstrated effective in this scenario. We show for the first time that this attack is detectable using stateful defenses, which store the queries made to the classifier and detect the abnormal cases in which they are similar. Once a malicious query is detected, the account of the user who made it can be blocked. Thus, the attacker must create many accounts to perpetrate the attack. To decrease this number, the attacker could create the adversarial program against a surrogate classifier and then fine-tune it by making few queries to the target model. In this scenario, the effectiveness of the stateful defense is reduced, but we show that it is still effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Borderline scenarios of outranking classification based on α-cut variation in fuzzy intervals: Application in police investigations A group decision-making and optimization method based on relative inverse number Representations of L-fuzzy rough approximation operators Distributed quantile regression in decentralized optimization Word2Vec-based efficient privacy-preserving shared representation learning for federated recommendation system in a cross-device setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1