基于搜索空间参数调整的粒子群优化算法

Raja Chandrasekaran, R. Saravanan, D. Kumar, N. Gangatharan
{"title":"基于搜索空间参数调整的粒子群优化算法","authors":"Raja Chandrasekaran, R. Saravanan, D. Kumar, N. Gangatharan","doi":"10.1504/ijmmno.2019.102576","DOIUrl":null,"url":null,"abstract":"Particle swarm optimisation is a trendy optimisation technique that is inhaled from the space navigational intelligence of birds. The optimisation technique is popular among the researchers for several decades because of the fact that it is inspired by the zonal and universal best members in all the generations. The optimisation by PSO is found better than few other optimisation techniques, in several trials with the optimisation of the mathematical benchmarks and real-time applications. But the more-than-modest orientation style of the algorithm often leads the population to premature convergence. Inertia weight parameter is used to tune the explorability of the population. In this paper, a zonal monitor (based on success in the recent iterations)-based inertia weight tuning is redressed by including universal monitors (based on the success with a universal fitness perspective). The proposed algorithm excels the conventional PSO, the PSO with zonal monitors alone. The inertia weight of the PSO with zonal monitor is also not dynamic whereas the proposed PSO's inertia weight are found to be more dynamic with tuning the explore ability with regard to zonal and universal context of fitness.","PeriodicalId":13553,"journal":{"name":"Int. J. Math. Model. Numer. Optimisation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel particle swarm optimisation with search space tuning parameter to avoid premature convergence\",\"authors\":\"Raja Chandrasekaran, R. Saravanan, D. Kumar, N. Gangatharan\",\"doi\":\"10.1504/ijmmno.2019.102576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimisation is a trendy optimisation technique that is inhaled from the space navigational intelligence of birds. The optimisation technique is popular among the researchers for several decades because of the fact that it is inspired by the zonal and universal best members in all the generations. The optimisation by PSO is found better than few other optimisation techniques, in several trials with the optimisation of the mathematical benchmarks and real-time applications. But the more-than-modest orientation style of the algorithm often leads the population to premature convergence. Inertia weight parameter is used to tune the explorability of the population. In this paper, a zonal monitor (based on success in the recent iterations)-based inertia weight tuning is redressed by including universal monitors (based on the success with a universal fitness perspective). The proposed algorithm excels the conventional PSO, the PSO with zonal monitors alone. The inertia weight of the PSO with zonal monitor is also not dynamic whereas the proposed PSO's inertia weight are found to be more dynamic with tuning the explore ability with regard to zonal and universal context of fitness.\",\"PeriodicalId\":13553,\"journal\":{\"name\":\"Int. J. Math. Model. Numer. Optimisation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Math. Model. Numer. Optimisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmmno.2019.102576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Math. Model. Numer. Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmmno.2019.102576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粒子群优化是一种从鸟类的空间导航智能中吸收而来的新型优化技术。优化技术在研究人员中流行了几十年,因为它受到了所有世代中区域和普遍最佳成员的启发。通过对数学基准和实时应用程序的优化试验,发现PSO的优化优于其他几种优化技术。但是,该算法过于温和的定向风格常常导致种群过早收敛。使用惯性权重参数来调整种群的可勘探性。在本文中,通过包括通用监视器(基于具有通用适应度视角的成功)来纠正基于惯性权重调优的区域监视器(基于最近迭代中的成功)。该算法优于传统的粒子群算法和仅带区域监视器的粒子群算法。带区域监测的粒子群的惯性权值也不是动态的,而该粒子群的惯性权值在考虑区域和普遍适应度的情况下调整探索能力后更具动态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel particle swarm optimisation with search space tuning parameter to avoid premature convergence
Particle swarm optimisation is a trendy optimisation technique that is inhaled from the space navigational intelligence of birds. The optimisation technique is popular among the researchers for several decades because of the fact that it is inspired by the zonal and universal best members in all the generations. The optimisation by PSO is found better than few other optimisation techniques, in several trials with the optimisation of the mathematical benchmarks and real-time applications. But the more-than-modest orientation style of the algorithm often leads the population to premature convergence. Inertia weight parameter is used to tune the explorability of the population. In this paper, a zonal monitor (based on success in the recent iterations)-based inertia weight tuning is redressed by including universal monitors (based on the success with a universal fitness perspective). The proposed algorithm excels the conventional PSO, the PSO with zonal monitors alone. The inertia weight of the PSO with zonal monitor is also not dynamic whereas the proposed PSO's inertia weight are found to be more dynamic with tuning the explore ability with regard to zonal and universal context of fitness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and simulation of SIR model for COVID-19 spreading with the effect of offline learning and vaccination: a case study of Indonesia An investigation on MX/G/1 queuing model of interrupted services in the manufacturing of edible cutlery process Construction of optimum strata boundaries using dynamic programming with product estimator under super population model Multi-level multi-objective linear fractional programming problem: a solution approach Two reduced non-smooth Newton's methods for discretised state constrained optimal control problem governed by advection-diffusion equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1