{"title":"Sr2IrO4在应变和塞曼场下的多轨道效应模拟","authors":"L. Engström, T. Pereg-Barnea, W. Witczak-Krempa","doi":"10.1103/physrevb.103.155147","DOIUrl":null,"url":null,"abstract":"We present a comprehensive study of a three-orbital lattice model suitable for the layered iridate Sr2IrO4. Our analysis includes various on-site interactions (including Hubbard and Hund's) as well as compressive strain, and a Zeeman magnetic field. We use a self-consistent mean field approach with multiple order parameters to characterize the resulting phases. While in some parameter regimes the compound is well described by an effective J=1/2 model, in other regimes the full multiorbital description is needed. As a function of the compressive strain, we uncover two quantum phase transitions: first a continuous metal-insulator transition, and subsequently a first order magnetic melting of the antiferromagnetic order. Crucially, bands of both J=1/2 and J=3/2 nature play important roles in these transitions. Our results qualitatively agree with experiments of Sr2IrO4 under strain induced by a substrate, and motivate the study of higher strains.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling multiorbital effects in \\nSr2IrO4\\n under strain and a Zeeman field\",\"authors\":\"L. Engström, T. Pereg-Barnea, W. Witczak-Krempa\",\"doi\":\"10.1103/physrevb.103.155147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a comprehensive study of a three-orbital lattice model suitable for the layered iridate Sr2IrO4. Our analysis includes various on-site interactions (including Hubbard and Hund's) as well as compressive strain, and a Zeeman magnetic field. We use a self-consistent mean field approach with multiple order parameters to characterize the resulting phases. While in some parameter regimes the compound is well described by an effective J=1/2 model, in other regimes the full multiorbital description is needed. As a function of the compressive strain, we uncover two quantum phase transitions: first a continuous metal-insulator transition, and subsequently a first order magnetic melting of the antiferromagnetic order. Crucially, bands of both J=1/2 and J=3/2 nature play important roles in these transitions. Our results qualitatively agree with experiments of Sr2IrO4 under strain induced by a substrate, and motivate the study of higher strains.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.103.155147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.103.155147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling multiorbital effects in
Sr2IrO4
under strain and a Zeeman field
We present a comprehensive study of a three-orbital lattice model suitable for the layered iridate Sr2IrO4. Our analysis includes various on-site interactions (including Hubbard and Hund's) as well as compressive strain, and a Zeeman magnetic field. We use a self-consistent mean field approach with multiple order parameters to characterize the resulting phases. While in some parameter regimes the compound is well described by an effective J=1/2 model, in other regimes the full multiorbital description is needed. As a function of the compressive strain, we uncover two quantum phase transitions: first a continuous metal-insulator transition, and subsequently a first order magnetic melting of the antiferromagnetic order. Crucially, bands of both J=1/2 and J=3/2 nature play important roles in these transitions. Our results qualitatively agree with experiments of Sr2IrO4 under strain induced by a substrate, and motivate the study of higher strains.