{"title":"具有高增益增强的低轮廓亚太赫兹发射阵列天线","authors":"Wei-dong Hu, Zhongbo Zhu, Xianqi Lin, Xiaojun Li","doi":"10.1109/IRMMW-THz.2019.8874224","DOIUrl":null,"url":null,"abstract":"A compact transmit-array (TA) antenna with reduced profile and improved radiation gain is proposed in this paper. The proposed transmitting surface, with a thickness of 0.127 mm (0.042 $\\lambda_{0}$ @105 GHz), is employed here to adjust the phase distribution across the aperture of a shortened feed horn. The full TA prototype is fabricated and measured. A 3-dB gain bandwidth of 9.52%, from 100 GHz to 110 GHz, is achieved. The measured maximum gain at 105 GHz is 22.76 dBi, which gets an 8-dB enhancement with respect to the primary feed, without expanding the radiation aperture size. This method considerably reduces the complexity of TA and achieves a much more compact structure.","PeriodicalId":6686,"journal":{"name":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"6 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-Profile Sub-Terahertz Transmit-Array Antenna with High Gain Enhancement\",\"authors\":\"Wei-dong Hu, Zhongbo Zhu, Xianqi Lin, Xiaojun Li\",\"doi\":\"10.1109/IRMMW-THz.2019.8874224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact transmit-array (TA) antenna with reduced profile and improved radiation gain is proposed in this paper. The proposed transmitting surface, with a thickness of 0.127 mm (0.042 $\\\\lambda_{0}$ @105 GHz), is employed here to adjust the phase distribution across the aperture of a shortened feed horn. The full TA prototype is fabricated and measured. A 3-dB gain bandwidth of 9.52%, from 100 GHz to 110 GHz, is achieved. The measured maximum gain at 105 GHz is 22.76 dBi, which gets an 8-dB enhancement with respect to the primary feed, without expanding the radiation aperture size. This method considerably reduces the complexity of TA and achieves a much more compact structure.\",\"PeriodicalId\":6686,\"journal\":{\"name\":\"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)\",\"volume\":\"6 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRMMW-THz.2019.8874224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz.2019.8874224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Low-Profile Sub-Terahertz Transmit-Array Antenna with High Gain Enhancement
A compact transmit-array (TA) antenna with reduced profile and improved radiation gain is proposed in this paper. The proposed transmitting surface, with a thickness of 0.127 mm (0.042 $\lambda_{0}$ @105 GHz), is employed here to adjust the phase distribution across the aperture of a shortened feed horn. The full TA prototype is fabricated and measured. A 3-dB gain bandwidth of 9.52%, from 100 GHz to 110 GHz, is achieved. The measured maximum gain at 105 GHz is 22.76 dBi, which gets an 8-dB enhancement with respect to the primary feed, without expanding the radiation aperture size. This method considerably reduces the complexity of TA and achieves a much more compact structure.