{"title":"乙烯-1-烯烃共聚物微观结构对模型共混物热流变行为的影响","authors":"G. Galgali, S. Kaliappan, Tej Pandit","doi":"10.3390/macromol2020011","DOIUrl":null,"url":null,"abstract":"Polyethylenes (PE) are the most commonly occurring ingredients for post-consumer recyclates (PCR). The structure–property relationships of different types of model PE-based blends are established using multiple thermo-rheological analyses. Although considered “simple”, the complex behavior of model PE-based blends is experimentally demonstrated for the first time for metallocene-catalyzed, linear, low-density polyethylenes (mLLDPE) with different microstructures that are commonly encountered in PCR. During non-isothermal crystallization, the microstructure of mLLDPE predominantly influences the interaction between mLLDPE and LDPE. Based on the mLLDPE microstructure, the molten LDPE phase acts either as a nucleating agent or as a crystallization rate promoting agent. Both rheological and thermal analyses show that higher activation energy is required for the reptation or movement of polymer chains in a highly branched microstructure with long chain branching (LCB) compared to a linear microstructure with short chain branching (SCB). The quasi-melt response, as measured by thermal analysis under non-isothermal conditions, is distinctly different and sensitive to both the SCB and LCB present in the LLDPE/LDPE blends.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Ethylene-1-Alkene Copolymers Microstructure on Thermo-Rheological Behavior of Model Blends for Enhanced Recycling\",\"authors\":\"G. Galgali, S. Kaliappan, Tej Pandit\",\"doi\":\"10.3390/macromol2020011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyethylenes (PE) are the most commonly occurring ingredients for post-consumer recyclates (PCR). The structure–property relationships of different types of model PE-based blends are established using multiple thermo-rheological analyses. Although considered “simple”, the complex behavior of model PE-based blends is experimentally demonstrated for the first time for metallocene-catalyzed, linear, low-density polyethylenes (mLLDPE) with different microstructures that are commonly encountered in PCR. During non-isothermal crystallization, the microstructure of mLLDPE predominantly influences the interaction between mLLDPE and LDPE. Based on the mLLDPE microstructure, the molten LDPE phase acts either as a nucleating agent or as a crystallization rate promoting agent. Both rheological and thermal analyses show that higher activation energy is required for the reptation or movement of polymer chains in a highly branched microstructure with long chain branching (LCB) compared to a linear microstructure with short chain branching (SCB). The quasi-melt response, as measured by thermal analysis under non-isothermal conditions, is distinctly different and sensitive to both the SCB and LCB present in the LLDPE/LDPE blends.\",\"PeriodicalId\":18139,\"journal\":{\"name\":\"Macromol\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/macromol2020011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol2020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Ethylene-1-Alkene Copolymers Microstructure on Thermo-Rheological Behavior of Model Blends for Enhanced Recycling
Polyethylenes (PE) are the most commonly occurring ingredients for post-consumer recyclates (PCR). The structure–property relationships of different types of model PE-based blends are established using multiple thermo-rheological analyses. Although considered “simple”, the complex behavior of model PE-based blends is experimentally demonstrated for the first time for metallocene-catalyzed, linear, low-density polyethylenes (mLLDPE) with different microstructures that are commonly encountered in PCR. During non-isothermal crystallization, the microstructure of mLLDPE predominantly influences the interaction between mLLDPE and LDPE. Based on the mLLDPE microstructure, the molten LDPE phase acts either as a nucleating agent or as a crystallization rate promoting agent. Both rheological and thermal analyses show that higher activation energy is required for the reptation or movement of polymer chains in a highly branched microstructure with long chain branching (LCB) compared to a linear microstructure with short chain branching (SCB). The quasi-melt response, as measured by thermal analysis under non-isothermal conditions, is distinctly different and sensitive to both the SCB and LCB present in the LLDPE/LDPE blends.