基于球面凸壳的高度并行点云平面提取

Hannes Möls, Kailai Li, U. Hanebeck
{"title":"基于球面凸壳的高度并行点云平面提取","authors":"Hannes Möls, Kailai Li, U. Hanebeck","doi":"10.1109/ICRA40945.2020.9197139","DOIUrl":null,"url":null,"abstract":"We present a novel region growing algorithm for plane extraction of organized point clouds using the spherical convex hull. Instead of explicit plane parameterization, our approach interprets potential underlying planes as a series of geometric constraints on the sphere that are refined during region growing. Unlike existing schemes relying on downsampling for sequential execution in real time, our approach enables pixelwise plane extraction that is highly parallelizable. We further test the proposed approach with a fully parallel implementation on a GPU. Evaluation based on public data sets has shown state-of-the-art extraction accuracy and superior speed compared to existing approaches, while guaranteeing real-time processing at full input resolution of a typical RGB-D camera.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"41 1","pages":"7920-7926"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Highly Parallelizable Plane Extraction for Organized Point Clouds Using Spherical Convex Hulls\",\"authors\":\"Hannes Möls, Kailai Li, U. Hanebeck\",\"doi\":\"10.1109/ICRA40945.2020.9197139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel region growing algorithm for plane extraction of organized point clouds using the spherical convex hull. Instead of explicit plane parameterization, our approach interprets potential underlying planes as a series of geometric constraints on the sphere that are refined during region growing. Unlike existing schemes relying on downsampling for sequential execution in real time, our approach enables pixelwise plane extraction that is highly parallelizable. We further test the proposed approach with a fully parallel implementation on a GPU. Evaluation based on public data sets has shown state-of-the-art extraction accuracy and superior speed compared to existing approaches, while guaranteeing real-time processing at full input resolution of a typical RGB-D camera.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"41 1\",\"pages\":\"7920-7926\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种基于球面凸壳的有组织点云平面提取的区域增长算法。我们的方法不是明确的平面参数化,而是将潜在的潜在平面解释为球体上的一系列几何约束,这些约束在区域增长过程中得到细化。与现有方案依赖于实时顺序执行的下采样不同,我们的方法实现了高度并行化的像素平面提取。我们用GPU上的完全并行实现进一步测试了所提出的方法。与现有方法相比,基于公共数据集的评估显示了最先进的提取精度和更快的速度,同时保证了典型RGB-D相机全输入分辨率下的实时处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly Parallelizable Plane Extraction for Organized Point Clouds Using Spherical Convex Hulls
We present a novel region growing algorithm for plane extraction of organized point clouds using the spherical convex hull. Instead of explicit plane parameterization, our approach interprets potential underlying planes as a series of geometric constraints on the sphere that are refined during region growing. Unlike existing schemes relying on downsampling for sequential execution in real time, our approach enables pixelwise plane extraction that is highly parallelizable. We further test the proposed approach with a fully parallel implementation on a GPU. Evaluation based on public data sets has shown state-of-the-art extraction accuracy and superior speed compared to existing approaches, while guaranteeing real-time processing at full input resolution of a typical RGB-D camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1