基于近红外图像的手背静脉生物特征识别

Julian M. Ruiz-Echeverri, Juan C. Bernal-Romero, J. Ramírez-Cortés, P. Gómez-Gil, J. Rangel-Magdaleno, H. Peregrina-Barreto
{"title":"基于近红外图像的手背静脉生物特征识别","authors":"Julian M. Ruiz-Echeverri, Juan C. Bernal-Romero, J. Ramírez-Cortés, P. Gómez-Gil, J. Rangel-Magdaleno, H. Peregrina-Barreto","doi":"10.1109/I2MTC50364.2021.9459955","DOIUrl":null,"url":null,"abstract":"This paper presents a biometric system on dorsal hand vein images in the near infrared (NIR), with an approach based on fusion of classifiers at score level. Fiducial features containing information on texture and shape are used with two classifiers based on Chi-square distance and Dynamic Time Warping (DTW), respectively, and further fused at score level. A collection of experiments using a publicly available dataset obtained from Universidad de Las Palmas de Gran Canaria was carried out. The obtained results indicate an Equal Error Rate of EER=0.0486 and EER=0.0274 and in average with classifiers fusion using sum and multiplication of scores in verification mode, and recognition rate of RR=95.80% and RR=97.30% in identification mode, respectively. These results represent an improvement with respect to results obtained when both classifiers and features are used individually.","PeriodicalId":6772,"journal":{"name":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"52 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dorsal hand veins biometrics using NIR images with fusion of classifiers at score level\",\"authors\":\"Julian M. Ruiz-Echeverri, Juan C. Bernal-Romero, J. Ramírez-Cortés, P. Gómez-Gil, J. Rangel-Magdaleno, H. Peregrina-Barreto\",\"doi\":\"10.1109/I2MTC50364.2021.9459955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a biometric system on dorsal hand vein images in the near infrared (NIR), with an approach based on fusion of classifiers at score level. Fiducial features containing information on texture and shape are used with two classifiers based on Chi-square distance and Dynamic Time Warping (DTW), respectively, and further fused at score level. A collection of experiments using a publicly available dataset obtained from Universidad de Las Palmas de Gran Canaria was carried out. The obtained results indicate an Equal Error Rate of EER=0.0486 and EER=0.0274 and in average with classifiers fusion using sum and multiplication of scores in verification mode, and recognition rate of RR=95.80% and RR=97.30% in identification mode, respectively. These results represent an improvement with respect to results obtained when both classifiers and features are used individually.\",\"PeriodicalId\":6772,\"journal\":{\"name\":\"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"52 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC50364.2021.9459955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC50364.2021.9459955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于分数水平分类器融合的近红外手背静脉图像生物识别系统。将包含纹理和形状信息的基准特征分别与基于卡方距离和动态时间扭曲(DTW)的两种分类器结合使用,并在分数水平上进一步融合。使用从大加那利岛拉斯帕尔马斯大学获得的公开可用数据集进行了一系列实验。结果表明,在验证模式下,采用分数和乘法融合的分类器的平均错误率为EER=0.0486和EER=0.0274,识别模式下的识别率分别为RR=95.80%和RR=97.30%。这些结果与单独使用分类器和特征时获得的结果相比有了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dorsal hand veins biometrics using NIR images with fusion of classifiers at score level
This paper presents a biometric system on dorsal hand vein images in the near infrared (NIR), with an approach based on fusion of classifiers at score level. Fiducial features containing information on texture and shape are used with two classifiers based on Chi-square distance and Dynamic Time Warping (DTW), respectively, and further fused at score level. A collection of experiments using a publicly available dataset obtained from Universidad de Las Palmas de Gran Canaria was carried out. The obtained results indicate an Equal Error Rate of EER=0.0486 and EER=0.0274 and in average with classifiers fusion using sum and multiplication of scores in verification mode, and recognition rate of RR=95.80% and RR=97.30% in identification mode, respectively. These results represent an improvement with respect to results obtained when both classifiers and features are used individually.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microwave Quantification of Porosity Level in 3D Printed Polymers Fast Transient Harmonic Selective Extraction Based on Modulation-CDSC-SDFT A UWB-based localization system: analysis of the effect of anchor positions and robustness enhancement in indoor environments Miniaturised bidirectional acoustic tag to enhance marine animal tracking studies Overload Current Interruption Protection Method based on Tunnel Magnetoresistive Sensor Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1