使用深度学习算法为照片绘制自动散景推荐引擎

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS Acta Universitatis Sapientiae Informatica Pub Date : 2022-12-01 DOI:10.2478/ausi-2022-0015
Rakesh Kumar, Meenu Gupta, Jaismeen, Shreya Dhanta, Nishant Kumar Pathak, Yukti Vivek, Ayush Sharma, Deepak, Gaurav Ramola, S. Velusamy
{"title":"使用深度学习算法为照片绘制自动散景推荐引擎","authors":"Rakesh Kumar, Meenu Gupta, Jaismeen, Shreya Dhanta, Nishant Kumar Pathak, Yukti Vivek, Ayush Sharma, Deepak, Gaurav Ramola, S. Velusamy","doi":"10.2478/ausi-2022-0015","DOIUrl":null,"url":null,"abstract":"Abstract Automatic bokeh is one of the smartphone’s essential photography effects. This effect enhances the quality of the image where the subject background gets out of focus by providing a soft (i.e., diverse) background. Most smartphones have a single rear camera that is lacking to provide which effects need to be applied to which kind of images. To do the same, smartphones depend on different software to generate the bokeh effect on images. Blur, Color-point, Zoom, Spin, Big Bokeh, Color Picker, Low-key, High-Key, and Silhouette are the popular bokeh effects. With this wide range of bokeh types available, it is difficult for the user to choose a suitable effect for their images. Deep Learning (DL) models (i.e., MobileNetV2, InceptionV3, and VGG16) are used in this work to recommend high-quality bokeh effects for images. Four thousand five hundred images are collected from online resources such as Google images, Unsplash, and Kaggle to examine the model performance. 85% accuracy has been achieved for recommending different bokeh effects using the proposed model MobileNetV2, which exceeds many of the existing models.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"10 1","pages":"248 - 272"},"PeriodicalIF":0.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rendering automatic bokeh recommendation engine for photos using deep learning algorithm\",\"authors\":\"Rakesh Kumar, Meenu Gupta, Jaismeen, Shreya Dhanta, Nishant Kumar Pathak, Yukti Vivek, Ayush Sharma, Deepak, Gaurav Ramola, S. Velusamy\",\"doi\":\"10.2478/ausi-2022-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Automatic bokeh is one of the smartphone’s essential photography effects. This effect enhances the quality of the image where the subject background gets out of focus by providing a soft (i.e., diverse) background. Most smartphones have a single rear camera that is lacking to provide which effects need to be applied to which kind of images. To do the same, smartphones depend on different software to generate the bokeh effect on images. Blur, Color-point, Zoom, Spin, Big Bokeh, Color Picker, Low-key, High-Key, and Silhouette are the popular bokeh effects. With this wide range of bokeh types available, it is difficult for the user to choose a suitable effect for their images. Deep Learning (DL) models (i.e., MobileNetV2, InceptionV3, and VGG16) are used in this work to recommend high-quality bokeh effects for images. Four thousand five hundred images are collected from online resources such as Google images, Unsplash, and Kaggle to examine the model performance. 85% accuracy has been achieved for recommending different bokeh effects using the proposed model MobileNetV2, which exceeds many of the existing models.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"10 1\",\"pages\":\"248 - 272\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2022-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2022-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

自动散景是智能手机必不可少的摄影效果之一。这种效果通过提供一个柔和的(即多样化的)背景来增强被摄主体背景失焦的图像质量。大多数智能手机都有一个后置摄像头,缺乏提供哪种效果需要应用于哪种图像的功能。为了做到这一点,智能手机依靠不同的软件来生成图像的散景效果。模糊、色点、变焦、旋转、大散景、选色器、低调、高调和剪影是流行的散景效果。有了如此广泛的散景类型,用户很难为他们的图像选择合适的效果。在这项工作中使用深度学习(DL)模型(即MobileNetV2, InceptionV3和VGG16)来推荐高质量的图像散景效果。从谷歌images、Unsplash和Kaggle等在线资源中收集4500张图像,以检查模型的性能。使用所提出的模型MobileNetV2推荐不同散景效果的准确率达到85%,超过了许多现有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rendering automatic bokeh recommendation engine for photos using deep learning algorithm
Abstract Automatic bokeh is one of the smartphone’s essential photography effects. This effect enhances the quality of the image where the subject background gets out of focus by providing a soft (i.e., diverse) background. Most smartphones have a single rear camera that is lacking to provide which effects need to be applied to which kind of images. To do the same, smartphones depend on different software to generate the bokeh effect on images. Blur, Color-point, Zoom, Spin, Big Bokeh, Color Picker, Low-key, High-Key, and Silhouette are the popular bokeh effects. With this wide range of bokeh types available, it is difficult for the user to choose a suitable effect for their images. Deep Learning (DL) models (i.e., MobileNetV2, InceptionV3, and VGG16) are used in this work to recommend high-quality bokeh effects for images. Four thousand five hundred images are collected from online resources such as Google images, Unsplash, and Kaggle to examine the model performance. 85% accuracy has been achieved for recommending different bokeh effects using the proposed model MobileNetV2, which exceeds many of the existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
期刊最新文献
E-super arithmetic graceful labelling of Hi(m, m), Hi(1) (m, m) and chain of even cycles On agglomeration-based rupture degree in networks and a heuristic algorithm On domination in signed graphs Connected certified domination edge critical and stable graphs Eccentric connectivity index in transformation graph Gxy+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1