{"title":"使用中性原子物质波干涉测量的超高灵敏度加速度计和陀螺仪","authors":"John F. Clauser","doi":"10.1016/0378-4363(88)90176-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper shows that matter-wave interferometers employing low-velocity neutral atoms can be used as inertial sensors with sensitivities that exceed those of conventional mechanical sensors and multiple circuit optical interferometers by many powers of ten. The energy and mass dependence of the phase shifts that are due to rotation and acceleration are different. Thus a pair of interferometers with different energies and/or masses can perform simultaneous independent measurements of rotation and acceleration. A proposed configuration is one formed by a sequence of planar diffraction gratings operating in high order. Gratings consist of near-resonant standing-wave laser beams. Laser decelerated and cooled atomic beams provide a suitable source. Path curvature due to acceleration and rotation is canceled by magnetic field gradients that produce an effective magnetic levitation of the atoms in a feedback arrangement that maintains null phase shift.</p></div>","PeriodicalId":101023,"journal":{"name":"Physica B+C","volume":"151 1","pages":"Pages 262-272"},"PeriodicalIF":0.0000,"publicationDate":"1988-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0378-4363(88)90176-3","citationCount":"123","resultStr":"{\"title\":\"Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry\",\"authors\":\"John F. Clauser\",\"doi\":\"10.1016/0378-4363(88)90176-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper shows that matter-wave interferometers employing low-velocity neutral atoms can be used as inertial sensors with sensitivities that exceed those of conventional mechanical sensors and multiple circuit optical interferometers by many powers of ten. The energy and mass dependence of the phase shifts that are due to rotation and acceleration are different. Thus a pair of interferometers with different energies and/or masses can perform simultaneous independent measurements of rotation and acceleration. A proposed configuration is one formed by a sequence of planar diffraction gratings operating in high order. Gratings consist of near-resonant standing-wave laser beams. Laser decelerated and cooled atomic beams provide a suitable source. Path curvature due to acceleration and rotation is canceled by magnetic field gradients that produce an effective magnetic levitation of the atoms in a feedback arrangement that maintains null phase shift.</p></div>\",\"PeriodicalId\":101023,\"journal\":{\"name\":\"Physica B+C\",\"volume\":\"151 1\",\"pages\":\"Pages 262-272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0378-4363(88)90176-3\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B+C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0378436388901763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B+C","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0378436388901763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry
This paper shows that matter-wave interferometers employing low-velocity neutral atoms can be used as inertial sensors with sensitivities that exceed those of conventional mechanical sensors and multiple circuit optical interferometers by many powers of ten. The energy and mass dependence of the phase shifts that are due to rotation and acceleration are different. Thus a pair of interferometers with different energies and/or masses can perform simultaneous independent measurements of rotation and acceleration. A proposed configuration is one formed by a sequence of planar diffraction gratings operating in high order. Gratings consist of near-resonant standing-wave laser beams. Laser decelerated and cooled atomic beams provide a suitable source. Path curvature due to acceleration and rotation is canceled by magnetic field gradients that produce an effective magnetic levitation of the atoms in a feedback arrangement that maintains null phase shift.