聚集偏差,局部估计和魔鬼

P. Cardiff
{"title":"聚集偏差,局部估计和魔鬼","authors":"P. Cardiff","doi":"10.2139/ssrn.3739892","DOIUrl":null,"url":null,"abstract":"When faced with a big problem, it is natural to summarize the data en route to a solution. But accepting summary as fact gives up evidence for convenience. Statistical measures from aggregate data may only be capable of indication or trends over time. Only consistency provides a mathematical basis for compiling data into a model; otherwise, the assumptions that turn actual data into indexes are subjective and biased. This paper recommends models of elements but not aggregate models. The proof of empiricism is control of micro variables representing the heterogeneity of individuals – these are the “critical details.” Imputation adds bias and variance to measurement, post weighting only complicates results arbitrarily, and allocation of sums by crude ratios is unjustified.","PeriodicalId":18085,"journal":{"name":"Macroeconomics: Employment","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregation Bias, Local Estimates and the Devil\",\"authors\":\"P. Cardiff\",\"doi\":\"10.2139/ssrn.3739892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When faced with a big problem, it is natural to summarize the data en route to a solution. But accepting summary as fact gives up evidence for convenience. Statistical measures from aggregate data may only be capable of indication or trends over time. Only consistency provides a mathematical basis for compiling data into a model; otherwise, the assumptions that turn actual data into indexes are subjective and biased. This paper recommends models of elements but not aggregate models. The proof of empiricism is control of micro variables representing the heterogeneity of individuals – these are the “critical details.” Imputation adds bias and variance to measurement, post weighting only complicates results arbitrarily, and allocation of sums by crude ratios is unjustified.\",\"PeriodicalId\":18085,\"journal\":{\"name\":\"Macroeconomics: Employment\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macroeconomics: Employment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3739892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomics: Employment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3739892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当面对一个大问题时,在找到解决方案的过程中总结数据是很自然的。但接受摘要为事实是为了方便而放弃了证据。汇总数据的统计措施可能只能显示一段时间内的趋势。只有一致性为将数据编译成模型提供了数学基础;否则,将实际数据转化为指数的假设是主观的和有偏见的。本文推荐的是元素模型,而不是聚合模型。经验主义的证明是对代表个体异质性的微观变量的控制——这些是“关键细节”。归算给测量增加了偏差和方差,事后加权只会使结果任意复杂化,而按粗比例分配款项是不合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aggregation Bias, Local Estimates and the Devil
When faced with a big problem, it is natural to summarize the data en route to a solution. But accepting summary as fact gives up evidence for convenience. Statistical measures from aggregate data may only be capable of indication or trends over time. Only consistency provides a mathematical basis for compiling data into a model; otherwise, the assumptions that turn actual data into indexes are subjective and biased. This paper recommends models of elements but not aggregate models. The proof of empiricism is control of micro variables representing the heterogeneity of individuals – these are the “critical details.” Imputation adds bias and variance to measurement, post weighting only complicates results arbitrarily, and allocation of sums by crude ratios is unjustified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deregulating Teacher Labor Markets Trends in Commuting Time of European Workers: A Cross-Country Analysis Labor Market Networks and Asset Returns Intergenerational Income Mobility and Economic Freedom as Positive Liberty Gender Identity, Co-Working Spouses and Relative Income within Households
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1