{"title":"减轻环境断裂敏感性的残余应力冲击方法综述","authors":"M. McMahon","doi":"10.3390/cmd2040031","DOIUrl":null,"url":null,"abstract":"Environmental cracking- and fatigue-related failures threaten all major industries and, to combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. Some of the most commonly used RSI methods, such as shot peening, laser shock peening, and low plasticity burnishing, as well as new methods, such as ultrasonic nanocrystal surface modification, are reviewed in the context of corrosion, corrosion fatigue, and environmental cracking mitigation. The successes and limitations of these treatments are discussed, with a focus on their efficacy against these three damage modes based on the available literature. Case studies are reviewed that demonstrate how these treatments have been adopted and advanced by industry, and application-specific research efforts are explored with a focus on future opportunities. Research is identified that illustrates how the utility of these surface treatments may vary between alloy systems, and where the benefits must be weighed against the risks to a component’s service performance.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Review of Residual Stress Impingement Methods to Mitigate Environmental Fracture Susceptibility\",\"authors\":\"M. McMahon\",\"doi\":\"10.3390/cmd2040031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental cracking- and fatigue-related failures threaten all major industries and, to combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. Some of the most commonly used RSI methods, such as shot peening, laser shock peening, and low plasticity burnishing, as well as new methods, such as ultrasonic nanocrystal surface modification, are reviewed in the context of corrosion, corrosion fatigue, and environmental cracking mitigation. The successes and limitations of these treatments are discussed, with a focus on their efficacy against these three damage modes based on the available literature. Case studies are reviewed that demonstrate how these treatments have been adopted and advanced by industry, and application-specific research efforts are explored with a focus on future opportunities. Research is identified that illustrates how the utility of these surface treatments may vary between alloy systems, and where the benefits must be weighed against the risks to a component’s service performance.\",\"PeriodicalId\":10693,\"journal\":{\"name\":\"Corrosion and Materials Degradation\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion and Materials Degradation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cmd2040031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion and Materials Degradation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmd2040031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Review of Residual Stress Impingement Methods to Mitigate Environmental Fracture Susceptibility
Environmental cracking- and fatigue-related failures threaten all major industries and, to combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. Some of the most commonly used RSI methods, such as shot peening, laser shock peening, and low plasticity burnishing, as well as new methods, such as ultrasonic nanocrystal surface modification, are reviewed in the context of corrosion, corrosion fatigue, and environmental cracking mitigation. The successes and limitations of these treatments are discussed, with a focus on their efficacy against these three damage modes based on the available literature. Case studies are reviewed that demonstrate how these treatments have been adopted and advanced by industry, and application-specific research efforts are explored with a focus on future opportunities. Research is identified that illustrates how the utility of these surface treatments may vary between alloy systems, and where the benefits must be weighed against the risks to a component’s service performance.