减轻环境断裂敏感性的残余应力冲击方法综述

M. McMahon
{"title":"减轻环境断裂敏感性的残余应力冲击方法综述","authors":"M. McMahon","doi":"10.3390/cmd2040031","DOIUrl":null,"url":null,"abstract":"Environmental cracking- and fatigue-related failures threaten all major industries and, to combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. Some of the most commonly used RSI methods, such as shot peening, laser shock peening, and low plasticity burnishing, as well as new methods, such as ultrasonic nanocrystal surface modification, are reviewed in the context of corrosion, corrosion fatigue, and environmental cracking mitigation. The successes and limitations of these treatments are discussed, with a focus on their efficacy against these three damage modes based on the available literature. Case studies are reviewed that demonstrate how these treatments have been adopted and advanced by industry, and application-specific research efforts are explored with a focus on future opportunities. Research is identified that illustrates how the utility of these surface treatments may vary between alloy systems, and where the benefits must be weighed against the risks to a component’s service performance.","PeriodicalId":10693,"journal":{"name":"Corrosion and Materials Degradation","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Review of Residual Stress Impingement Methods to Mitigate Environmental Fracture Susceptibility\",\"authors\":\"M. McMahon\",\"doi\":\"10.3390/cmd2040031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental cracking- and fatigue-related failures threaten all major industries and, to combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. Some of the most commonly used RSI methods, such as shot peening, laser shock peening, and low plasticity burnishing, as well as new methods, such as ultrasonic nanocrystal surface modification, are reviewed in the context of corrosion, corrosion fatigue, and environmental cracking mitigation. The successes and limitations of these treatments are discussed, with a focus on their efficacy against these three damage modes based on the available literature. Case studies are reviewed that demonstrate how these treatments have been adopted and advanced by industry, and application-specific research efforts are explored with a focus on future opportunities. Research is identified that illustrates how the utility of these surface treatments may vary between alloy systems, and where the benefits must be weighed against the risks to a component’s service performance.\",\"PeriodicalId\":10693,\"journal\":{\"name\":\"Corrosion and Materials Degradation\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion and Materials Degradation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cmd2040031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion and Materials Degradation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmd2040031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与环境开裂和疲劳相关的故障威胁着所有主要行业,为了对抗这种退化,已经开发了许多具有不同程度功效和易用性的残余应力冲击(RSI)方法。一些最常用的RSI方法,如喷丸强化、激光冲击强化和低塑性抛光,以及新方法,如超声波纳米晶表面改性,在腐蚀、腐蚀疲劳和环境开裂缓解的背景下进行了综述。讨论了这些治疗方法的成功和局限性,并根据现有文献重点讨论了它们对这三种损伤模式的疗效。本文回顾了案例研究,展示了这些处理方法是如何被工业采用和发展的,并探讨了针对特定应用的研究工作,重点是未来的机会。研究表明,这些表面处理的效用在不同的合金系统之间可能会有所不同,并且必须权衡其好处与组件使用性能的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of Residual Stress Impingement Methods to Mitigate Environmental Fracture Susceptibility
Environmental cracking- and fatigue-related failures threaten all major industries and, to combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. Some of the most commonly used RSI methods, such as shot peening, laser shock peening, and low plasticity burnishing, as well as new methods, such as ultrasonic nanocrystal surface modification, are reviewed in the context of corrosion, corrosion fatigue, and environmental cracking mitigation. The successes and limitations of these treatments are discussed, with a focus on their efficacy against these three damage modes based on the available literature. Case studies are reviewed that demonstrate how these treatments have been adopted and advanced by industry, and application-specific research efforts are explored with a focus on future opportunities. Research is identified that illustrates how the utility of these surface treatments may vary between alloy systems, and where the benefits must be weighed against the risks to a component’s service performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Influence of Isothermal Annealing in the 600 to 750 °C Range on the Degradation of SAF 2205 Duplex Stainless Steel Unraveling the Corrosion of the Ti–6Al–4V Orthopedic Alloy in Phosphate-Buffered Saline (PBS) Solution: Influence of Frequency and Potential Impact of the Delay Period between Electrochemical Hydrogen Charging and Tensile Testing on the Mechanical Properties of Mild Steel Mechanistic Analysis of Hydrogen Evolution Reaction on Stationary Polycrystalline Gold Electrodes in H2SO4 Solutions In-Situ AFM Studies of Surfactant Adsorption on Stainless Steel Surfaces during Electrochemical Polarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1