晶粒尺寸均匀性对Al2Mg和Al6Mg合金板料冲压性能影响的研究

E. Nosova, A. Fadeeva, M. Starodubtseva
{"title":"晶粒尺寸均匀性对Al2Mg和Al6Mg合金板料冲压性能影响的研究","authors":"E. Nosova, A. Fadeeva, M. Starodubtseva","doi":"10.17073/0021-3438-2019-3-47-55","DOIUrl":null,"url":null,"abstract":"The quality of products made of sheet aluminum alloys strongly depends on the technological features of the sheet stamping process, as well as on the structure of sheet semi-finished products. The grain size and grain structure uniformity are among the key structural features that influence stampability. A method is proposed and the homogeneity of the grain structure is evaluated. Stampability of Al2Mg and Al6Mg aluminium alloys was evaluated based on measurements of the spring back index, minimum bending radius, stamping ratio, and Martens strain index. Cold work (with a strain degree of 20 %) and subsequent recrystallization annealing at temperatures of 250, 350 and 450 °C for 1 h were used to obtain a grain structure of (26,8 Ѓ} 7,4)÷(126 Ѓ} 43) μm (Al6Mg alloy) and (120 Ѓ} 11)÷(264 Ѓ} 130) μm (Al2Mg alloy) in size. As a result of processing, the effect of the initial grain size was revealed: the coarser structure of the Al2Mg alloy led to a larger grain size after strain and annealing. It was found that an increase in the grain size in both alloys leads to an increase in the Martens index and a decrease in the stamping ratio, which indicates higher stampability of the alloys in the drawing operations of sheet stamping. In the Al2Mg alloy, an increase in the grain size leads to a decrease in the spring back index by 1,5–1,7 times, and an increase in the minimum bending radius. In the Al6Mg alloy, an increase in the grain size leads to an increase in the spring back index by 1,1–1,2 times, and a decrease in the minimum bending radius. The Al6Mg minimum bending radius remains higher compared to Al2Mg regardless of the grain size. Grain size inhomogeneity in the Al6Mg alloy causes an increase in the Martens index and minimum bending radius, and a decrease in the stamping ratio. In the Al2Mg alloy, grain size inhomogeneity causes an increase in the Martens index and minimum bending radius, and a decrease in the stamping ratio. For the spring back index, the increase in grain size inhomogeneity causes a high scatter of data. In the Al6Mg alloy, the low annealing temperature led to the preservation of the non-recrystallized structure, which influenced the decrease in stampability.","PeriodicalId":14523,"journal":{"name":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of grain size homogeneity effect on sheet stamping ability characteristics of Al2Mg and Al6Mg alloys\",\"authors\":\"E. Nosova, A. Fadeeva, M. Starodubtseva\",\"doi\":\"10.17073/0021-3438-2019-3-47-55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of products made of sheet aluminum alloys strongly depends on the technological features of the sheet stamping process, as well as on the structure of sheet semi-finished products. The grain size and grain structure uniformity are among the key structural features that influence stampability. A method is proposed and the homogeneity of the grain structure is evaluated. Stampability of Al2Mg and Al6Mg aluminium alloys was evaluated based on measurements of the spring back index, minimum bending radius, stamping ratio, and Martens strain index. Cold work (with a strain degree of 20 %) and subsequent recrystallization annealing at temperatures of 250, 350 and 450 °C for 1 h were used to obtain a grain structure of (26,8 Ѓ} 7,4)÷(126 Ѓ} 43) μm (Al6Mg alloy) and (120 Ѓ} 11)÷(264 Ѓ} 130) μm (Al2Mg alloy) in size. As a result of processing, the effect of the initial grain size was revealed: the coarser structure of the Al2Mg alloy led to a larger grain size after strain and annealing. It was found that an increase in the grain size in both alloys leads to an increase in the Martens index and a decrease in the stamping ratio, which indicates higher stampability of the alloys in the drawing operations of sheet stamping. In the Al2Mg alloy, an increase in the grain size leads to a decrease in the spring back index by 1,5–1,7 times, and an increase in the minimum bending radius. In the Al6Mg alloy, an increase in the grain size leads to an increase in the spring back index by 1,1–1,2 times, and a decrease in the minimum bending radius. The Al6Mg minimum bending radius remains higher compared to Al2Mg regardless of the grain size. Grain size inhomogeneity in the Al6Mg alloy causes an increase in the Martens index and minimum bending radius, and a decrease in the stamping ratio. In the Al2Mg alloy, grain size inhomogeneity causes an increase in the Martens index and minimum bending radius, and a decrease in the stamping ratio. For the spring back index, the increase in grain size inhomogeneity causes a high scatter of data. In the Al6Mg alloy, the low annealing temperature led to the preservation of the non-recrystallized structure, which influenced the decrease in stampability.\",\"PeriodicalId\":14523,\"journal\":{\"name\":\"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17073/0021-3438-2019-3-47-55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0021-3438-2019-3-47-55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

板材铝合金制品的质量在很大程度上取决于板材冲压工艺的技术特点,以及板材半成品的结构。晶粒尺寸和晶粒组织均匀性是影响冲压性能的关键组织特征。提出了一种方法,并对晶粒组织的均匀性进行了评价。通过回弹指数、最小弯曲半径、冲压比和马氏应变指数对Al2Mg和Al6Mg铝合金的冲压性能进行了评价。在应变度为20%的条件下进行冷加工,并在250、350和450℃下进行1 h的再结晶退火,得到晶粒尺寸为(26,8 Ѓ} 7,4)÷(126 Ѓ} 43) μm (Al6Mg合金)和(120 Ѓ} 11)÷(264 Ѓ} 130) μm (Al2Mg合金)的晶粒。加工结果表明,Al2Mg合金的初始晶粒尺寸的影响是:Al2Mg合金的组织较粗,在应变和退火后晶粒尺寸较大。结果表明,两种合金的晶粒尺寸增大,马氏指数增大,冲压比减小,表明合金在板料冲压拉深过程中具有较高的冲压性能。在Al2Mg合金中,随着晶粒尺寸的增大,回弹指数降低了1、5 ~ 1、7倍,最小弯曲半径增大。在Al6Mg合金中,晶粒尺寸的增加导致回弹指数增加1倍、1 - 1倍、2倍,最小弯曲半径减小。无论晶粒尺寸如何,Al6Mg的最小弯曲半径都高于Al2Mg。Al6Mg合金晶粒尺寸的不均匀性导致马氏指数和最小弯曲半径增大,冲压比减小。在Al2Mg合金中,晶粒尺寸的不均匀性导致马氏指数和最小弯曲半径增大,冲压比减小。对于回弹指数,粒度不均匀性的增加导致数据的高散点。在Al6Mg合金中,较低的退火温度导致非再结晶组织的保留,从而影响了冲压性能的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research of grain size homogeneity effect on sheet stamping ability characteristics of Al2Mg and Al6Mg alloys
The quality of products made of sheet aluminum alloys strongly depends on the technological features of the sheet stamping process, as well as on the structure of sheet semi-finished products. The grain size and grain structure uniformity are among the key structural features that influence stampability. A method is proposed and the homogeneity of the grain structure is evaluated. Stampability of Al2Mg and Al6Mg aluminium alloys was evaluated based on measurements of the spring back index, minimum bending radius, stamping ratio, and Martens strain index. Cold work (with a strain degree of 20 %) and subsequent recrystallization annealing at temperatures of 250, 350 and 450 °C for 1 h were used to obtain a grain structure of (26,8 Ѓ} 7,4)÷(126 Ѓ} 43) μm (Al6Mg alloy) and (120 Ѓ} 11)÷(264 Ѓ} 130) μm (Al2Mg alloy) in size. As a result of processing, the effect of the initial grain size was revealed: the coarser structure of the Al2Mg alloy led to a larger grain size after strain and annealing. It was found that an increase in the grain size in both alloys leads to an increase in the Martens index and a decrease in the stamping ratio, which indicates higher stampability of the alloys in the drawing operations of sheet stamping. In the Al2Mg alloy, an increase in the grain size leads to a decrease in the spring back index by 1,5–1,7 times, and an increase in the minimum bending radius. In the Al6Mg alloy, an increase in the grain size leads to an increase in the spring back index by 1,1–1,2 times, and a decrease in the minimum bending radius. The Al6Mg minimum bending radius remains higher compared to Al2Mg regardless of the grain size. Grain size inhomogeneity in the Al6Mg alloy causes an increase in the Martens index and minimum bending radius, and a decrease in the stamping ratio. In the Al2Mg alloy, grain size inhomogeneity causes an increase in the Martens index and minimum bending radius, and a decrease in the stamping ratio. For the spring back index, the increase in grain size inhomogeneity causes a high scatter of data. In the Al6Mg alloy, the low annealing temperature led to the preservation of the non-recrystallized structure, which influenced the decrease in stampability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ML5 alloy structure and properties at different modification methods Structure and properties of coarse-grained WC-Со hard metals with extra homogeneous microstructure Production of silumins using silicon production waste Al-Ca-M-La-Fe in-situ aluminum-matrix eutectic composites High-temperature ion nitriding of T15K6 indexable carbide inserts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1