{"title":"网络流量实时图像分析的研究","authors":"S. Kim, A. Reddy","doi":"10.1109/INFCOM.2005.1498482","DOIUrl":null,"url":null,"abstract":"This paper presents NetViewer, a network measurement approach that can simultaneously detect, identify and visualize attacks and anomalous traffic in real-time by passively monitoring packet headers. We propose to represent samples of network packet header data as frames or images. With such a formulation, a series of samples can be seen as a sequence of frames or video. This enables techniques from image processing and video compression to be applied to the packet header data to reveal interesting properties of traffic. We show that \"scene change analysis\" can reveal sudden changes in traffic behavior or anomalies. We also show that \"motion prediction\" techniques can be employed to understand the patterns of some of the attacks. We show that it may be feasible to represent multiple pieces of data as different colors of an image enabling a uniform treatment of multidimensional packet header data. We compare NetViewer with classical detection theory based Neyman-Pearson test and an IDS tool.","PeriodicalId":20482,"journal":{"name":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","volume":"22 1","pages":"2056-2067 vol. 3"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"A study of analyzing network traffic as images in real-time\",\"authors\":\"S. Kim, A. Reddy\",\"doi\":\"10.1109/INFCOM.2005.1498482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents NetViewer, a network measurement approach that can simultaneously detect, identify and visualize attacks and anomalous traffic in real-time by passively monitoring packet headers. We propose to represent samples of network packet header data as frames or images. With such a formulation, a series of samples can be seen as a sequence of frames or video. This enables techniques from image processing and video compression to be applied to the packet header data to reveal interesting properties of traffic. We show that \\\"scene change analysis\\\" can reveal sudden changes in traffic behavior or anomalies. We also show that \\\"motion prediction\\\" techniques can be employed to understand the patterns of some of the attacks. We show that it may be feasible to represent multiple pieces of data as different colors of an image enabling a uniform treatment of multidimensional packet header data. We compare NetViewer with classical detection theory based Neyman-Pearson test and an IDS tool.\",\"PeriodicalId\":20482,\"journal\":{\"name\":\"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.\",\"volume\":\"22 1\",\"pages\":\"2056-2067 vol. 3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2005.1498482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2005.1498482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

本文介绍了一种网络测量方法NetViewer,它可以通过被动监控数据包头来实时检测、识别和可视化攻击和异常流量。我们建议将网络包头数据的样本表示为帧或图像。有了这样的公式,一系列的样本可以被看作是一个序列的帧或视频。这使得图像处理和视频压缩技术可以应用于包头数据,以揭示流量的有趣属性。我们展示了“场景变化分析”可以揭示交通行为的突然变化或异常。我们还展示了“运动预测”技术可以用来理解一些攻击的模式。我们表明,将多个数据块表示为图像的不同颜色可能是可行的,从而可以对多维包头数据进行统一处理。我们将NetViewer与基于经典检测理论的Neyman-Pearson测试和IDS工具进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study of analyzing network traffic as images in real-time
This paper presents NetViewer, a network measurement approach that can simultaneously detect, identify and visualize attacks and anomalous traffic in real-time by passively monitoring packet headers. We propose to represent samples of network packet header data as frames or images. With such a formulation, a series of samples can be seen as a sequence of frames or video. This enables techniques from image processing and video compression to be applied to the packet header data to reveal interesting properties of traffic. We show that "scene change analysis" can reveal sudden changes in traffic behavior or anomalies. We also show that "motion prediction" techniques can be employed to understand the patterns of some of the attacks. We show that it may be feasible to represent multiple pieces of data as different colors of an image enabling a uniform treatment of multidimensional packet header data. We compare NetViewer with classical detection theory based Neyman-Pearson test and an IDS tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Provably competitive adaptive routing On the effectiveness of DDoS attacks on statistical filtering FIT: fast Internet traceback dPAM: a distributed prefetching protocol for scalable asynchronous multicast in P2P systems Cooperation and decision-making in a wireless multi-provider setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1