一个支持高中生的聊天机器人意图分类器

IF 1.1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS EAI Endorsed Transactions on Scalable Information Systems Pub Date : 2022-12-21 DOI:10.4108/eetsis.v10i2.2948
Suha Khalil Assayed, K. Shaalan, M. Alkhatib
{"title":"一个支持高中生的聊天机器人意图分类器","authors":"Suha Khalil Assayed, K. Shaalan, M. Alkhatib","doi":"10.4108/eetsis.v10i2.2948","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: An intent classification is a challenged task in Natural Language Processing (NLP) as we are asking the machine to understand our language by categorizing the users’ requests. As a result, the intent classification plays an essential role in having a chatbot conversation that understand students’ requests. \nOBJECTIVES: In this study, we developed a novel chatbot called “HSchatbot” for predicting the intent classifications from high school students’ enquiries. Evidently, students in high schools are the most concerned among all students about their future; thus, in this stage they need an instant support in order to prepare them to take the right decision for their career choice. \nMETHODS: The authors in this study used the Multinomial Naive-Bayes and Random Forest classifiers for predicting the students’ enquiries, which in turn improved the performance of the classifiers by using the feature’s extractions. \nRESULTS: The results show that the random forest classifier performed better than Multinomial Naive-Bayes since the performance of this model is checked by using different metrics like accuracy, precision, recall and F1 score. Moreover, all showed high accuracy scores exceeding 90% in all metrics. However, the accuracy of Multinomial Naive-Bayes classifier performed much better when using CountVectorizers compared to using the TF-IDF. \nCONCLUSION: In the future work, the results will be analysed and investigated in order to figure out the main factors that affect the performance of Multinomial Naive-Bayes classifier, as well as evaluating the model with using a large corpus of students’ questions and enquiries.","PeriodicalId":43034,"journal":{"name":"EAI Endorsed Transactions on Scalable Information Systems","volume":"86 1","pages":"e1"},"PeriodicalIF":1.1000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Chatbot Intent Classifier for Supporting High School Students\",\"authors\":\"Suha Khalil Assayed, K. Shaalan, M. Alkhatib\",\"doi\":\"10.4108/eetsis.v10i2.2948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION: An intent classification is a challenged task in Natural Language Processing (NLP) as we are asking the machine to understand our language by categorizing the users’ requests. As a result, the intent classification plays an essential role in having a chatbot conversation that understand students’ requests. \\nOBJECTIVES: In this study, we developed a novel chatbot called “HSchatbot” for predicting the intent classifications from high school students’ enquiries. Evidently, students in high schools are the most concerned among all students about their future; thus, in this stage they need an instant support in order to prepare them to take the right decision for their career choice. \\nMETHODS: The authors in this study used the Multinomial Naive-Bayes and Random Forest classifiers for predicting the students’ enquiries, which in turn improved the performance of the classifiers by using the feature’s extractions. \\nRESULTS: The results show that the random forest classifier performed better than Multinomial Naive-Bayes since the performance of this model is checked by using different metrics like accuracy, precision, recall and F1 score. Moreover, all showed high accuracy scores exceeding 90% in all metrics. However, the accuracy of Multinomial Naive-Bayes classifier performed much better when using CountVectorizers compared to using the TF-IDF. \\nCONCLUSION: In the future work, the results will be analysed and investigated in order to figure out the main factors that affect the performance of Multinomial Naive-Bayes classifier, as well as evaluating the model with using a large corpus of students’ questions and enquiries.\",\"PeriodicalId\":43034,\"journal\":{\"name\":\"EAI Endorsed Transactions on Scalable Information Systems\",\"volume\":\"86 1\",\"pages\":\"e1\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Scalable Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetsis.v10i2.2948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Scalable Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.v10i2.2948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

简介:意图分类在自然语言处理(NLP)中是一项具有挑战性的任务,因为我们要求机器通过对用户的请求进行分类来理解我们的语言。因此,意图分类在让聊天机器人进行理解学生请求的对话中起着至关重要的作用。目的:在本研究中,我们开发了一种名为“HSchatbot”的新型聊天机器人,用于从高中生的询问中预测意图分类。显然,中学生是所有学生中最关心他们的未来的;因此,在这个阶段,他们需要一个即时的支持,以便他们为自己的职业选择做出正确的决定。方法:作者在本研究中使用多项朴素贝叶斯和随机森林分类器来预测学生的查询,这反过来又通过使用特征提取来提高分类器的性能。结果:结果表明,随机森林分类器的性能优于多项朴素贝叶斯,因为该模型的性能是通过使用不同的指标,如准确率、精度、召回率和F1分数来检查的。此外,所有患者在所有指标中均显示出超过90%的高准确率得分。然而,与使用TF-IDF相比,使用反矢量器时,多项朴素贝叶斯分类器的准确率要高得多。结论:在未来的工作中,将对结果进行分析和调查,以找出影响多项朴素贝叶斯分类器性能的主要因素,并使用大量学生提问和查询的语料库对模型进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Chatbot Intent Classifier for Supporting High School Students
INTRODUCTION: An intent classification is a challenged task in Natural Language Processing (NLP) as we are asking the machine to understand our language by categorizing the users’ requests. As a result, the intent classification plays an essential role in having a chatbot conversation that understand students’ requests. OBJECTIVES: In this study, we developed a novel chatbot called “HSchatbot” for predicting the intent classifications from high school students’ enquiries. Evidently, students in high schools are the most concerned among all students about their future; thus, in this stage they need an instant support in order to prepare them to take the right decision for their career choice. METHODS: The authors in this study used the Multinomial Naive-Bayes and Random Forest classifiers for predicting the students’ enquiries, which in turn improved the performance of the classifiers by using the feature’s extractions. RESULTS: The results show that the random forest classifier performed better than Multinomial Naive-Bayes since the performance of this model is checked by using different metrics like accuracy, precision, recall and F1 score. Moreover, all showed high accuracy scores exceeding 90% in all metrics. However, the accuracy of Multinomial Naive-Bayes classifier performed much better when using CountVectorizers compared to using the TF-IDF. CONCLUSION: In the future work, the results will be analysed and investigated in order to figure out the main factors that affect the performance of Multinomial Naive-Bayes classifier, as well as evaluating the model with using a large corpus of students’ questions and enquiries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EAI Endorsed Transactions on Scalable Information Systems
EAI Endorsed Transactions on Scalable Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.80
自引率
15.40%
发文量
49
审稿时长
10 weeks
期刊最新文献
Factors influencing the employment intention of private college graduates based on robot control system design Japanese Flipped Classroom Knowledge Acquisition Based on Canvas Web-Based Learning Management System Effectiveness and perception of augmented reality in the teaching of structured programming fundamentals in university students Mechanical Design Method and Joint Simulation Analysis of Industrial Robots Based on Trajectory Planning Algorithm and Kinematics Global research on ubiquitous learning: A network and output approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1