{"title":"基于机器学习的mMTC 5G通信网络小区关联","authors":"Siddhant Ray, B. Bhattacharyya","doi":"10.1504/IJMNDI.2020.10035089","DOIUrl":null,"url":null,"abstract":"With the advent of 5G communication networks, the number of devices on the core 5G network significantly increases.A5Gnetwork is a cloud native, massively connected internet of things (IoT) platform with a huge number of devices hosted on the network now known as massive machine type communication (mMTC). As ultra-low latency is pivotal in developing 5G communication, a proper cell association scheme is now required to meet the load and traffic needs of the new network, opposed to older cell association schemes which were based only on the reference signal received power (RSRP). This paper proposes an unsupervised machine learning algorithm, namely hidden Markov model (HMM) learning on the network's telemetry data, which is used to learn network parameters and select the best eNodeB for cell association. The proposed model uses an HMM learning followed by decoding for selecting the optimal cell for association.","PeriodicalId":35022,"journal":{"name":"International Journal of Mobile Network Design and Innovation","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning based cell association for mMTC 5G communication networks\",\"authors\":\"Siddhant Ray, B. Bhattacharyya\",\"doi\":\"10.1504/IJMNDI.2020.10035089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of 5G communication networks, the number of devices on the core 5G network significantly increases.A5Gnetwork is a cloud native, massively connected internet of things (IoT) platform with a huge number of devices hosted on the network now known as massive machine type communication (mMTC). As ultra-low latency is pivotal in developing 5G communication, a proper cell association scheme is now required to meet the load and traffic needs of the new network, opposed to older cell association schemes which were based only on the reference signal received power (RSRP). This paper proposes an unsupervised machine learning algorithm, namely hidden Markov model (HMM) learning on the network's telemetry data, which is used to learn network parameters and select the best eNodeB for cell association. The proposed model uses an HMM learning followed by decoding for selecting the optimal cell for association.\",\"PeriodicalId\":35022,\"journal\":{\"name\":\"International Journal of Mobile Network Design and Innovation\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mobile Network Design and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMNDI.2020.10035089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Network Design and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMNDI.2020.10035089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
Machine learning based cell association for mMTC 5G communication networks
With the advent of 5G communication networks, the number of devices on the core 5G network significantly increases.A5Gnetwork is a cloud native, massively connected internet of things (IoT) platform with a huge number of devices hosted on the network now known as massive machine type communication (mMTC). As ultra-low latency is pivotal in developing 5G communication, a proper cell association scheme is now required to meet the load and traffic needs of the new network, opposed to older cell association schemes which were based only on the reference signal received power (RSRP). This paper proposes an unsupervised machine learning algorithm, namely hidden Markov model (HMM) learning on the network's telemetry data, which is used to learn network parameters and select the best eNodeB for cell association. The proposed model uses an HMM learning followed by decoding for selecting the optimal cell for association.
期刊介绍:
The IJMNDI addresses the state-of-the-art in computerisation for the deployment and operation of current and future wireless networks. Following the trend in many other engineering disciplines, intelligent and automatic computer software has become the critical factor for obtaining high performance network solutions that meet the objectives of both the network subscriber and operator. Characteristically, high performance and innovative techniques are required to address computationally intensive radio engineering planning problems while providing optimised solutions and knowledge which will enhance the deployment and operation of expensive wireless resources.