{"title":"用神经分子软件设计增强数字硬件的可进化性:一种生物学驱动的方法","authors":"Yo-Hsien Lin, Jong-Chen Chen, Wei-Chang Lee, Chung-Chian Hsu","doi":"10.1109/CEC.2010.5586228","DOIUrl":null,"url":null,"abstract":"Organisms have better adaptability that computer systems in dealing with environmental changes or noise. A close structure-function relation inherent in biological structures is an important feature for providing great malleability to environmental changes. By contrast, computers have fast processing speeds but with limited adaptability. A biologically motivated model (hardware design) that combines intra-and inter-neuronal information processing implemented with digital circuit was proposed. Pattern recognition was the present application domain. The circuit was tested with Quartus II system, a digital circuit simulation tool. The experimental result showed that the artificial neuromolecularware (ANM) exhibited a close structure-function relationship, possessed several evolvability-enhancing features combined to facilitate evolutionary learning, and was capable of functioning continuously in the face of noise.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"90 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing digital hardware evolvability with a neuromolecularware design: A biologically-motivated approach\",\"authors\":\"Yo-Hsien Lin, Jong-Chen Chen, Wei-Chang Lee, Chung-Chian Hsu\",\"doi\":\"10.1109/CEC.2010.5586228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organisms have better adaptability that computer systems in dealing with environmental changes or noise. A close structure-function relation inherent in biological structures is an important feature for providing great malleability to environmental changes. By contrast, computers have fast processing speeds but with limited adaptability. A biologically motivated model (hardware design) that combines intra-and inter-neuronal information processing implemented with digital circuit was proposed. Pattern recognition was the present application domain. The circuit was tested with Quartus II system, a digital circuit simulation tool. The experimental result showed that the artificial neuromolecularware (ANM) exhibited a close structure-function relationship, possessed several evolvability-enhancing features combined to facilitate evolutionary learning, and was capable of functioning continuously in the face of noise.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"90 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5586228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing digital hardware evolvability with a neuromolecularware design: A biologically-motivated approach
Organisms have better adaptability that computer systems in dealing with environmental changes or noise. A close structure-function relation inherent in biological structures is an important feature for providing great malleability to environmental changes. By contrast, computers have fast processing speeds but with limited adaptability. A biologically motivated model (hardware design) that combines intra-and inter-neuronal information processing implemented with digital circuit was proposed. Pattern recognition was the present application domain. The circuit was tested with Quartus II system, a digital circuit simulation tool. The experimental result showed that the artificial neuromolecularware (ANM) exhibited a close structure-function relationship, possessed several evolvability-enhancing features combined to facilitate evolutionary learning, and was capable of functioning continuously in the face of noise.