{"title":"在Skyrme能量密度形式下,极性构型与非极性构型在268Sg*化合物核衰变中的作用","authors":"R. Mittal, K. Sandhu, M. Sharma","doi":"10.15415/jnp.2021.91011","DOIUrl":null,"url":null,"abstract":"The effect of polar and non-polar configurations is investigated in the decay of 268Sg* compound nucleus formed via spherical projectile (30Si) and prolate deformed target (238U) using the dynamical cluster decay model. The SSK and GSkI skyrme forces are used to investigate the impact of polar and nonpolar (equatorial) configurations on the preformation probability P0 and consequently on the fission cross-sections of 268Sg* nucleus. For non-polar configuration some secondary peaks corresponding to magic shells Z=28 and N=50 are observed, whose magnitude is significantly suppressed for the polar counterpart. The effect of polar and non-polar configurations is further analyzed in reference to barrier lowering parameter ΔVB. The calculated fission cross-section find adequate agreement with experimental data for chosen set of skyrme forces.","PeriodicalId":16534,"journal":{"name":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Polar vs Non-polar Configurations in the Decay of 268Sg* Compound Nucleus Within the Skyrme Energy Density Formalism\",\"authors\":\"R. Mittal, K. Sandhu, M. Sharma\",\"doi\":\"10.15415/jnp.2021.91011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of polar and non-polar configurations is investigated in the decay of 268Sg* compound nucleus formed via spherical projectile (30Si) and prolate deformed target (238U) using the dynamical cluster decay model. The SSK and GSkI skyrme forces are used to investigate the impact of polar and nonpolar (equatorial) configurations on the preformation probability P0 and consequently on the fission cross-sections of 268Sg* nucleus. For non-polar configuration some secondary peaks corresponding to magic shells Z=28 and N=50 are observed, whose magnitude is significantly suppressed for the polar counterpart. The effect of polar and non-polar configurations is further analyzed in reference to barrier lowering parameter ΔVB. The calculated fission cross-section find adequate agreement with experimental data for chosen set of skyrme forces.\",\"PeriodicalId\":16534,\"journal\":{\"name\":\"Journal of Nuclear Physics, Material Sciences, Radiation and Applications\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Physics, Material Sciences, Radiation and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15415/jnp.2021.91011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15415/jnp.2021.91011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of Polar vs Non-polar Configurations in the Decay of 268Sg* Compound Nucleus Within the Skyrme Energy Density Formalism
The effect of polar and non-polar configurations is investigated in the decay of 268Sg* compound nucleus formed via spherical projectile (30Si) and prolate deformed target (238U) using the dynamical cluster decay model. The SSK and GSkI skyrme forces are used to investigate the impact of polar and nonpolar (equatorial) configurations on the preformation probability P0 and consequently on the fission cross-sections of 268Sg* nucleus. For non-polar configuration some secondary peaks corresponding to magic shells Z=28 and N=50 are observed, whose magnitude is significantly suppressed for the polar counterpart. The effect of polar and non-polar configurations is further analyzed in reference to barrier lowering parameter ΔVB. The calculated fission cross-section find adequate agreement with experimental data for chosen set of skyrme forces.