使用机器学习算法和传统技术预测路面状况指数

عبدالمطلب عبدالعزيز يخلف علي, محمد عمران امبارك السكبي, مفتاح محمد صالح سريح
{"title":"使用机器学习算法和传统技术预测路面状况指数","authors":"عبدالمطلب عبدالعزيز يخلف علي, محمد عمران امبارك السكبي, مفتاح محمد صالح سريح","doi":"10.51984/jopas.v21i4.2267","DOIUrl":null,"url":null,"abstract":"Government agencies and transportation engineers use pavement management systems (PMS) to evaluate pavement performance and keep pavement above the minimum acceptable performance standards. The Pavement Condition Index (PCI) and the international roughness index (IRI) are among the most commonly used indices to evaluate pavement conditions. Due to IRI data collection being more accessible and less expensive than collecting pavement distress data, this study aims to develop PCI models that can successfully estimate the PCI values based on IRI for flexible pavement using two Machine Learning techniques (ML), namely: Random Forest (RF), and Support Vector Machine (SVM), and three conventional techniques, namely: linear, quadratic, and cubic regression. The study was carried out with the database collected from the Long-Term Pavement Performance (LTPP) program. The results of the dataset reveal that both ML models (RF and SVM) have strong prediction ability with high values of coefficient of determination (R^2 = 99.7 and 96.8) %, and low values of Root Mean Squared Error (RMSE = 1.095 and 3.569) % and Mean Absolute Error (MAE = 0.474 and 2.244). In conclusion, the goodness of fit of the proposed ML models was compared with conventional techniques models previously developed. The results showed that the ML models yielded higher prediction accuracy than conventional techniques.","PeriodicalId":16911,"journal":{"name":"Journal of Pure & Applied Sciences","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Pavement Condition Index Using Machine Learning Algorithms and Conventional Techniques\",\"authors\":\"عبدالمطلب عبدالعزيز يخلف علي, محمد عمران امبارك السكبي, مفتاح محمد صالح سريح\",\"doi\":\"10.51984/jopas.v21i4.2267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Government agencies and transportation engineers use pavement management systems (PMS) to evaluate pavement performance and keep pavement above the minimum acceptable performance standards. The Pavement Condition Index (PCI) and the international roughness index (IRI) are among the most commonly used indices to evaluate pavement conditions. Due to IRI data collection being more accessible and less expensive than collecting pavement distress data, this study aims to develop PCI models that can successfully estimate the PCI values based on IRI for flexible pavement using two Machine Learning techniques (ML), namely: Random Forest (RF), and Support Vector Machine (SVM), and three conventional techniques, namely: linear, quadratic, and cubic regression. The study was carried out with the database collected from the Long-Term Pavement Performance (LTPP) program. The results of the dataset reveal that both ML models (RF and SVM) have strong prediction ability with high values of coefficient of determination (R^2 = 99.7 and 96.8) %, and low values of Root Mean Squared Error (RMSE = 1.095 and 3.569) % and Mean Absolute Error (MAE = 0.474 and 2.244). In conclusion, the goodness of fit of the proposed ML models was compared with conventional techniques models previously developed. The results showed that the ML models yielded higher prediction accuracy than conventional techniques.\",\"PeriodicalId\":16911,\"journal\":{\"name\":\"Journal of Pure & Applied Sciences\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure & Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51984/jopas.v21i4.2267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure & Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51984/jopas.v21i4.2267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

政府机构和运输工程师使用路面管理系统(PMS)来评估路面性能,并保持路面高于最低可接受的性能标准。路面状况指数(PCI)和国际粗糙度指数(IRI)是评价路面状况最常用的指标。由于IRI数据收集比收集路面破损数据更容易获得且成本更低,因此本研究旨在开发PCI模型,该模型可以使用随机森林(RF)和支持向量机(SVM)两种机器学习技术(ML)以及线性、二次和三次回归三种传统技术(线性、二次和三次回归)成功估算基于IRI的柔性路面PCI值。这项研究是利用长期路面性能(LTPP)项目收集的数据库进行的。结果表明,ML模型(RF和SVM)均具有较强的预测能力,其决定系数(R^2 = 99.7和96.8)%较高,均方根误差(RMSE = 1.095和3.569)%和平均绝对误差(MAE = 0.474和2.244)%较低。最后,将所提出的机器学习模型与传统技术模型的拟合优度进行了比较。结果表明,机器学习模型的预测精度高于传统技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Pavement Condition Index Using Machine Learning Algorithms and Conventional Techniques
Government agencies and transportation engineers use pavement management systems (PMS) to evaluate pavement performance and keep pavement above the minimum acceptable performance standards. The Pavement Condition Index (PCI) and the international roughness index (IRI) are among the most commonly used indices to evaluate pavement conditions. Due to IRI data collection being more accessible and less expensive than collecting pavement distress data, this study aims to develop PCI models that can successfully estimate the PCI values based on IRI for flexible pavement using two Machine Learning techniques (ML), namely: Random Forest (RF), and Support Vector Machine (SVM), and three conventional techniques, namely: linear, quadratic, and cubic regression. The study was carried out with the database collected from the Long-Term Pavement Performance (LTPP) program. The results of the dataset reveal that both ML models (RF and SVM) have strong prediction ability with high values of coefficient of determination (R^2 = 99.7 and 96.8) %, and low values of Root Mean Squared Error (RMSE = 1.095 and 3.569) % and Mean Absolute Error (MAE = 0.474 and 2.244). In conclusion, the goodness of fit of the proposed ML models was compared with conventional techniques models previously developed. The results showed that the ML models yielded higher prediction accuracy than conventional techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrating ChatGPT in Education and Learning: A Case Study on Libyan Universities The awareness of thyroid disorders and an iodine-rich diet among a sample of the population in some western cities of Libya التنوع الحيوي للهائمات الحيوانية في بحيرة محروقة منطقة الشاطئ-ليبيا تطبيق قواعد الأسبقية في تنفيذ الأعمال لغرض توازن خطوط التجميع باستخدام الجداول الإلكترونية تقدير البخر نتح المرجعي باستخدام نظام استدلال عصبي ضبابي مكيف بمنطقة شحات في ليبيا
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1