用于高阶模型检查的面向类型的抽象细化方法

S. Ramsay, R. Neatherway, C. Ong
{"title":"用于高阶模型检查的面向类型的抽象细化方法","authors":"S. Ramsay, R. Neatherway, C. Ong","doi":"10.1145/2535838.2535873","DOIUrl":null,"url":null,"abstract":"The trivial-automaton model checking problem for higher-order recursion schemes has become a widely studied object in connection with the automatic verification of higher-order programs. The problem is formidably hard: despite considerable progress in recent years, no decision procedures have been demonstrated to scale robustly beyond recursion schemes that comprise more than a few hundred rewrite rules. We present a new, fixed-parameter polynomial time algorithm, based on a novel, type directed form of abstraction refinement in which behaviours of a scheme are distinguished by the abstraction according to the intersection types that they inhabit (the properties that they satisfy). Unlike other intersection type approaches, our algorithm reasons both about acceptance by the property automaton and acceptance by its dual, simultaneously, in order to minimize the amount of work done by converging on the solution to a problem instance from both sides. We have constructed Preface, a prototype implementation of the algorithm, and assembled an extensive body of evidence to demonstrate empirically that the algorithm readily scales to recursion schemes of several thousand rules, well beyond the capabilities of current state-of-the-art higher-order model checkers.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"A type-directed abstraction refinement approach to higher-order model checking\",\"authors\":\"S. Ramsay, R. Neatherway, C. Ong\",\"doi\":\"10.1145/2535838.2535873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trivial-automaton model checking problem for higher-order recursion schemes has become a widely studied object in connection with the automatic verification of higher-order programs. The problem is formidably hard: despite considerable progress in recent years, no decision procedures have been demonstrated to scale robustly beyond recursion schemes that comprise more than a few hundred rewrite rules. We present a new, fixed-parameter polynomial time algorithm, based on a novel, type directed form of abstraction refinement in which behaviours of a scheme are distinguished by the abstraction according to the intersection types that they inhabit (the properties that they satisfy). Unlike other intersection type approaches, our algorithm reasons both about acceptance by the property automaton and acceptance by its dual, simultaneously, in order to minimize the amount of work done by converging on the solution to a problem instance from both sides. We have constructed Preface, a prototype implementation of the algorithm, and assembled an extensive body of evidence to demonstrate empirically that the algorithm readily scales to recursion schemes of several thousand rules, well beyond the capabilities of current state-of-the-art higher-order model checkers.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535838.2535873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

高阶递归方案的平凡自动机模型检验问题已成为高阶程序自动验证研究的热点。这个问题非常困难:尽管近年来取得了相当大的进展,但没有一个决策过程被证明可以健壮地扩展到包含数百个重写规则的递归方案之外。我们提出了一种新的固定参数多项式时间算法,基于一种新的、类型导向的抽象改进形式,其中方案的行为根据它们所处的交集类型(它们满足的属性)通过抽象来区分。与其他交叉类型的方法不同,我们的算法同时考虑属性自动机的可接受性和对偶的可接受性,以便通过从两边收敛到问题实例的解来最小化所做的工作量。我们构建了前言,这是该算法的一个原型实现,并收集了大量证据,以经验证明该算法很容易扩展到数千条规则的递归方案,远远超出了当前最先进的高阶模型检查器的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A type-directed abstraction refinement approach to higher-order model checking
The trivial-automaton model checking problem for higher-order recursion schemes has become a widely studied object in connection with the automatic verification of higher-order programs. The problem is formidably hard: despite considerable progress in recent years, no decision procedures have been demonstrated to scale robustly beyond recursion schemes that comprise more than a few hundred rewrite rules. We present a new, fixed-parameter polynomial time algorithm, based on a novel, type directed form of abstraction refinement in which behaviours of a scheme are distinguished by the abstraction according to the intersection types that they inhabit (the properties that they satisfy). Unlike other intersection type approaches, our algorithm reasons both about acceptance by the property automaton and acceptance by its dual, simultaneously, in order to minimize the amount of work done by converging on the solution to a problem instance from both sides. We have constructed Preface, a prototype implementation of the algorithm, and assembled an extensive body of evidence to demonstrate empirically that the algorithm readily scales to recursion schemes of several thousand rules, well beyond the capabilities of current state-of-the-art higher-order model checkers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Verified systems Session details: Semantic models 2 Session details: Program analysis 3 Session details: Program analysis 1 Session details: Type system design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1