透视感知对象计数的逆向透视网络

Yifan Yang, Guorong Li, Zhe Wu, Li Su, Qingming Huang, N. Sebe
{"title":"透视感知对象计数的逆向透视网络","authors":"Yifan Yang, Guorong Li, Zhe Wu, Li Su, Qingming Huang, N. Sebe","doi":"10.1109/cvpr42600.2020.00443","DOIUrl":null,"url":null,"abstract":"One of the critical challenges of object counting is the dramatic scale variations, which is introduced by arbitrary perspectives. We propose a reverse perspective network to solve the scale variations of input images, instead of generating perspective maps to smooth final outputs. The reverse perspective network explicitly evaluates the perspective distortions, and efficiently corrects the distortions by uniformly warping the input images. Then the proposed network delivers images with similar instance scales to the regressor. Thus the regression network doesn't need multi-scale receptive fields to match the various scales. Besides, to further solve the scale problem of more congested areas, we enhance the corresponding regions of ground-truth with the evaluation errors. Then we force the regressor to learn from the augmented ground-truth via an adversarial process. Furthermore, to verify the proposed model, we collected a vehicle counting dataset based on Unmanned Aerial Vehicles (UAVs). The proposed dataset has fierce scale variations. Extensive experimental results on four benchmark datasets show the improvements of our method against the state-of-the-arts.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"96 1","pages":"4373-4382"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"Reverse Perspective Network for Perspective-Aware Object Counting\",\"authors\":\"Yifan Yang, Guorong Li, Zhe Wu, Li Su, Qingming Huang, N. Sebe\",\"doi\":\"10.1109/cvpr42600.2020.00443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the critical challenges of object counting is the dramatic scale variations, which is introduced by arbitrary perspectives. We propose a reverse perspective network to solve the scale variations of input images, instead of generating perspective maps to smooth final outputs. The reverse perspective network explicitly evaluates the perspective distortions, and efficiently corrects the distortions by uniformly warping the input images. Then the proposed network delivers images with similar instance scales to the regressor. Thus the regression network doesn't need multi-scale receptive fields to match the various scales. Besides, to further solve the scale problem of more congested areas, we enhance the corresponding regions of ground-truth with the evaluation errors. Then we force the regressor to learn from the augmented ground-truth via an adversarial process. Furthermore, to verify the proposed model, we collected a vehicle counting dataset based on Unmanned Aerial Vehicles (UAVs). The proposed dataset has fierce scale variations. Extensive experimental results on four benchmark datasets show the improvements of our method against the state-of-the-arts.\",\"PeriodicalId\":6715,\"journal\":{\"name\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"96 1\",\"pages\":\"4373-4382\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvpr42600.2020.00443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

摘要

物体计数的关键挑战之一是由任意视角引入的戏剧性尺度变化。我们提出了一个反向透视网络来解决输入图像的比例变化,而不是生成透视映射来平滑最终输出。反向透视网络明确地评估透视畸变,并通过对输入图像进行均匀翘曲来有效地纠正畸变。然后,该网络提供与回归器具有相似实例尺度的图像。因此,回归网络不需要多尺度接受野来匹配不同的尺度。此外,为了进一步解决更拥挤地区的尺度问题,我们对具有评价误差的地真值相应区域进行了增强。然后,我们强迫回归器通过对抗过程从增强的基础真理中学习。此外,为了验证所提出的模型,我们收集了一个基于无人机(uav)的车辆计数数据集。所提出的数据集具有强烈的尺度变化。在四个基准数据集上的大量实验结果表明,我们的方法对最先进的方法进行了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reverse Perspective Network for Perspective-Aware Object Counting
One of the critical challenges of object counting is the dramatic scale variations, which is introduced by arbitrary perspectives. We propose a reverse perspective network to solve the scale variations of input images, instead of generating perspective maps to smooth final outputs. The reverse perspective network explicitly evaluates the perspective distortions, and efficiently corrects the distortions by uniformly warping the input images. Then the proposed network delivers images with similar instance scales to the regressor. Thus the regression network doesn't need multi-scale receptive fields to match the various scales. Besides, to further solve the scale problem of more congested areas, we enhance the corresponding regions of ground-truth with the evaluation errors. Then we force the regressor to learn from the augmented ground-truth via an adversarial process. Furthermore, to verify the proposed model, we collected a vehicle counting dataset based on Unmanned Aerial Vehicles (UAVs). The proposed dataset has fierce scale variations. Extensive experimental results on four benchmark datasets show the improvements of our method against the state-of-the-arts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 3D Part Guided Image Editing for Fine-Grained Object Understanding SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation Approximating shapes in images with low-complexity polygons PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1