{"title":"在预混合停滞火焰中制备纳米多孔二氧化钛气敏膜","authors":"E. Tolmachoff, S. Memarzadeh, Hai Wang","doi":"10.1021/JP206061H","DOIUrl":null,"url":null,"abstract":"We examine the conductometric CO sensing of TiO2 nanoparticle films prepared with a recently developed flame technique. Porous films of crystalline TiO2 nanoparticles were grown directly on interdigitated electrodes by repeatedly translating electrodes over a premixed stagnation flame doped with titanium tetraisopropoxide as the titanium precursor. Flame-deposited electrodes with particle diameter around 9 nm show enhanced sensitivity to CO by up to an order of magnitude compared to sensing films prepared using a commercial TiO2 powder with the particle diameter around 25 nm. A gas-surface model is used to examine chemical kinetic and equilibrium behaviors and explain the sensor responses. The analysis shows that the nature of the gas-surface reactions is similar between these films. The desirable feature of flame-deposited sensing film is attributed to the smaller particle size which provides a greater surface area and a more electrically sensitive conduit.","PeriodicalId":58,"journal":{"name":"The Journal of Physical Chemistry ","volume":"39 1","pages":"21620-21628"},"PeriodicalIF":2.7810,"publicationDate":"2011-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Nanoporous Titania Gas Sensing Films Prepared in a Premixed Stagnation Flame\",\"authors\":\"E. Tolmachoff, S. Memarzadeh, Hai Wang\",\"doi\":\"10.1021/JP206061H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the conductometric CO sensing of TiO2 nanoparticle films prepared with a recently developed flame technique. Porous films of crystalline TiO2 nanoparticles were grown directly on interdigitated electrodes by repeatedly translating electrodes over a premixed stagnation flame doped with titanium tetraisopropoxide as the titanium precursor. Flame-deposited electrodes with particle diameter around 9 nm show enhanced sensitivity to CO by up to an order of magnitude compared to sensing films prepared using a commercial TiO2 powder with the particle diameter around 25 nm. A gas-surface model is used to examine chemical kinetic and equilibrium behaviors and explain the sensor responses. The analysis shows that the nature of the gas-surface reactions is similar between these films. The desirable feature of flame-deposited sensing film is attributed to the smaller particle size which provides a greater surface area and a more electrically sensitive conduit.\",\"PeriodicalId\":58,\"journal\":{\"name\":\"The Journal of Physical Chemistry \",\"volume\":\"39 1\",\"pages\":\"21620-21628\"},\"PeriodicalIF\":2.7810,\"publicationDate\":\"2011-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry \",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/JP206061H\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry ","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/JP206061H","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoporous Titania Gas Sensing Films Prepared in a Premixed Stagnation Flame
We examine the conductometric CO sensing of TiO2 nanoparticle films prepared with a recently developed flame technique. Porous films of crystalline TiO2 nanoparticles were grown directly on interdigitated electrodes by repeatedly translating electrodes over a premixed stagnation flame doped with titanium tetraisopropoxide as the titanium precursor. Flame-deposited electrodes with particle diameter around 9 nm show enhanced sensitivity to CO by up to an order of magnitude compared to sensing films prepared using a commercial TiO2 powder with the particle diameter around 25 nm. A gas-surface model is used to examine chemical kinetic and equilibrium behaviors and explain the sensor responses. The analysis shows that the nature of the gas-surface reactions is similar between these films. The desirable feature of flame-deposited sensing film is attributed to the smaller particle size which provides a greater surface area and a more electrically sensitive conduit.