基于度量学习的胶囊网络扩展

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Advanced Computational Intelligence and Intelligent Informatics Pub Date : 2023-03-20 DOI:10.20965/jaciii.2023.p0173
Nozomu Ohta, Shin Kawai, H. Nobuhara
{"title":"基于度量学习的胶囊网络扩展","authors":"Nozomu Ohta, Shin Kawai, H. Nobuhara","doi":"10.20965/jaciii.2023.p0173","DOIUrl":null,"url":null,"abstract":"A capsule network (CapsNet) is a deep learning model for image classification that provides robustness to changes in the poses of objects in the images. A capsule is a vector whose direction represents the presence, position, size, and pose of an object. However, with CapsNet, the distribution of capsules is concentrated in a class, and the number of capsules increases with the number of classes. In addition, learning is computationally expensive for a CapsNet. We proposed a method to increase the diversity of capsule directions and decrease the computational cost of CapsNet training by allowing a single capsule to represent multiple object classes. To determine the distance between classes, we used an additive angular margin loss called ArcFace. To validate the proposed method, the distribution of the capsules was determined using principal component analysis to validate the proposed method. In addition, using the MNIST, fashion-MNIST, EMNIST, SVHN, and CIFAR-10 datasets, as well as the corresponding affine-transformed datasets, we determined the accuracy and training time of the proposed method and original CapsNet. The accuracy of the proposed method improved by 8.91% on the CIFAR-10 dataset, and the training time reduced by more than 19% for each dataset compared with those of the original CapsNets.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"269 1","pages":"173-181"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capsule Network Extension Based on Metric Learning\",\"authors\":\"Nozomu Ohta, Shin Kawai, H. Nobuhara\",\"doi\":\"10.20965/jaciii.2023.p0173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A capsule network (CapsNet) is a deep learning model for image classification that provides robustness to changes in the poses of objects in the images. A capsule is a vector whose direction represents the presence, position, size, and pose of an object. However, with CapsNet, the distribution of capsules is concentrated in a class, and the number of capsules increases with the number of classes. In addition, learning is computationally expensive for a CapsNet. We proposed a method to increase the diversity of capsule directions and decrease the computational cost of CapsNet training by allowing a single capsule to represent multiple object classes. To determine the distance between classes, we used an additive angular margin loss called ArcFace. To validate the proposed method, the distribution of the capsules was determined using principal component analysis to validate the proposed method. In addition, using the MNIST, fashion-MNIST, EMNIST, SVHN, and CIFAR-10 datasets, as well as the corresponding affine-transformed datasets, we determined the accuracy and training time of the proposed method and original CapsNet. The accuracy of the proposed method improved by 8.91% on the CIFAR-10 dataset, and the training time reduced by more than 19% for each dataset compared with those of the original CapsNets.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"269 1\",\"pages\":\"173-181\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

胶囊网络(CapsNet)是一种用于图像分类的深度学习模型,它对图像中物体的姿势变化提供鲁棒性。胶囊是一个矢量,它的方向表示对象的存在、位置、大小和姿态。而在CapsNet中,胶囊的分布集中在一个类中,胶囊的数量随着类的增加而增加。此外,学习对于CapsNet来说在计算上是昂贵的。我们提出了一种方法,通过允许单个胶囊代表多个对象类来增加胶囊方向的多样性并降低CapsNet训练的计算成本。为了确定类之间的距离,我们使用了一种叫做ArcFace的附加角边损失。为了验证所提出的方法,利用主成分分析确定胶囊的分布以验证所提出的方法。此外,利用MNIST、fashion-MNIST、EMNIST、SVHN和CIFAR-10数据集以及相应的仿射变换数据集,确定了本文方法与原始CapsNet的准确率和训练时间。该方法在CIFAR-10数据集上的准确率提高了8.91%,每个数据集的训练时间比原始capnet减少了19%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Capsule Network Extension Based on Metric Learning
A capsule network (CapsNet) is a deep learning model for image classification that provides robustness to changes in the poses of objects in the images. A capsule is a vector whose direction represents the presence, position, size, and pose of an object. However, with CapsNet, the distribution of capsules is concentrated in a class, and the number of capsules increases with the number of classes. In addition, learning is computationally expensive for a CapsNet. We proposed a method to increase the diversity of capsule directions and decrease the computational cost of CapsNet training by allowing a single capsule to represent multiple object classes. To determine the distance between classes, we used an additive angular margin loss called ArcFace. To validate the proposed method, the distribution of the capsules was determined using principal component analysis to validate the proposed method. In addition, using the MNIST, fashion-MNIST, EMNIST, SVHN, and CIFAR-10 datasets, as well as the corresponding affine-transformed datasets, we determined the accuracy and training time of the proposed method and original CapsNet. The accuracy of the proposed method improved by 8.91% on the CIFAR-10 dataset, and the training time reduced by more than 19% for each dataset compared with those of the original CapsNets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
期刊最新文献
The Impact of Individual Heterogeneity on Household Asset Choice: An Empirical Study Based on China Family Panel Studies Private Placement, Investor Sentiment, and Stock Price Anomaly Does Increasing Public Service Expenditure Slow the Long-Term Economic Growth Rate?—Evidence from China Prediction and Characteristic Analysis of Enterprise Digital Transformation Integrating XGBoost and SHAP Industrial Chain Map and Linkage Network Characteristics of Digital Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1