{"title":"多工作流网络中可同步位置的细化","authors":"K. V. Hee, N. Sidorova, J. V. D. Werf","doi":"10.3233/FI-2013-783","DOIUrl":null,"url":null,"abstract":"Stepwise refinement is a well-known strategy in system modeling. The refinement rules should preserve essential behavioral properties, such as deadlock freedom, boundedness and weak termination. A well-known example is the refinement rule that replaces a safe place of a Petri net with a sound workflow net. In this case a token on the refined place undergoes a procedure that is modeled in detail by the refining workflow net.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":"420 1","pages":"149-168"},"PeriodicalIF":0.4000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Refinement of Synchronizable Places with Multi-workflow Nets\",\"authors\":\"K. V. Hee, N. Sidorova, J. V. D. Werf\",\"doi\":\"10.3233/FI-2013-783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stepwise refinement is a well-known strategy in system modeling. The refinement rules should preserve essential behavioral properties, such as deadlock freedom, boundedness and weak termination. A well-known example is the refinement rule that replaces a safe place of a Petri net with a sound workflow net. In this case a token on the refined place undergoes a procedure that is modeled in detail by the refining workflow net.\",\"PeriodicalId\":56310,\"journal\":{\"name\":\"Fundamenta Informaticae\",\"volume\":\"420 1\",\"pages\":\"149-168\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Informaticae\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/FI-2013-783\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/FI-2013-783","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Refinement of Synchronizable Places with Multi-workflow Nets
Stepwise refinement is a well-known strategy in system modeling. The refinement rules should preserve essential behavioral properties, such as deadlock freedom, boundedness and weak termination. A well-known example is the refinement rule that replaces a safe place of a Petri net with a sound workflow net. In this case a token on the refined place undergoes a procedure that is modeled in detail by the refining workflow net.
期刊介绍:
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
solutions by mathematical methods of problems emerging in computer science
solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to):
theory of computing,
complexity theory,
algorithms and data structures,
computational aspects of combinatorics and graph theory,
programming language theory,
theoretical aspects of programming languages,
computer-aided verification,
computer science logic,
database theory,
logic programming,
automated deduction,
formal languages and automata theory,
concurrency and distributed computing,
cryptography and security,
theoretical issues in artificial intelligence,
machine learning,
pattern recognition,
algorithmic game theory,
bioinformatics and computational biology,
quantum computing,
probabilistic methods,
algebraic and categorical methods.