{"title":"光掺杂Mott绝缘体中η对超导隐相","authors":"Jiajun Li, D. Golež, P. Werner, M. Eckstein","doi":"10.1103/physrevb.102.165136","DOIUrl":null,"url":null,"abstract":"We show that a metastable $\\eta$--pairing superconducting phase can be induced by photodoping doublons and holes into a strongly repulsive fermionic Hubbard model. The doublon-hole condensate originates from an intrinsic doublon-hole exchange interaction and does not rely on the symmetry of the half-filled Hubbard model. It extends over a wide range of doublon densities and effective temperatures. Different non-equilibrium protocols to realize this state are proposed and numerically tested. We also study the optical conductivity in the superconducting phase, which exhibits ideal metallic behavior, i.e., a delta function at zero-frequency in the conductivity, in conjunction with a negative conductivity at large frequencies. These characteristic optical properties can provide a fingerprint of the $\\eta$-pairing phase in pump-probe experiments.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"η\\n-paired superconducting hidden phase in photodoped Mott insulators\",\"authors\":\"Jiajun Li, D. Golež, P. Werner, M. Eckstein\",\"doi\":\"10.1103/physrevb.102.165136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a metastable $\\\\eta$--pairing superconducting phase can be induced by photodoping doublons and holes into a strongly repulsive fermionic Hubbard model. The doublon-hole condensate originates from an intrinsic doublon-hole exchange interaction and does not rely on the symmetry of the half-filled Hubbard model. It extends over a wide range of doublon densities and effective temperatures. Different non-equilibrium protocols to realize this state are proposed and numerically tested. We also study the optical conductivity in the superconducting phase, which exhibits ideal metallic behavior, i.e., a delta function at zero-frequency in the conductivity, in conjunction with a negative conductivity at large frequencies. These characteristic optical properties can provide a fingerprint of the $\\\\eta$-pairing phase in pump-probe experiments.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.102.165136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.165136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
η
-paired superconducting hidden phase in photodoped Mott insulators
We show that a metastable $\eta$--pairing superconducting phase can be induced by photodoping doublons and holes into a strongly repulsive fermionic Hubbard model. The doublon-hole condensate originates from an intrinsic doublon-hole exchange interaction and does not rely on the symmetry of the half-filled Hubbard model. It extends over a wide range of doublon densities and effective temperatures. Different non-equilibrium protocols to realize this state are proposed and numerically tested. We also study the optical conductivity in the superconducting phase, which exhibits ideal metallic behavior, i.e., a delta function at zero-frequency in the conductivity, in conjunction with a negative conductivity at large frequencies. These characteristic optical properties can provide a fingerprint of the $\eta$-pairing phase in pump-probe experiments.