{"title":"芦荟对纳米氧化锡合成的影响","authors":"V. Veeraganesh, A. Subramaniyan, T. Sornakumar","doi":"10.26655/AJNANOMAT.2018.6.2","DOIUrl":null,"url":null,"abstract":"Tin (IV) oxide (SnO2) is a compound semiconductor which has been used for gas sensing and fluoride removal. SnO2 was synthesized with tin chloride as a precursor by sol gel method. Aloe vera was added during the preparation of SnO2 to study its effect on the nanosize, composition and morphology. The prepared nanopowders are characterized by XRD, SEM and FTIR to analyze the crystallite size, morphology, functional groups and absorption bands. FTIR reveal the change in functional group and shift in absorbance due to presence of Aloe vera. XRD analysis with Williamson Hall plot confirms the nanosize which was in accordance with the SEM results. PL spectra were recorded to find the effect of band gap and intensity on SnO2 due to aloe vera.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of Aloe vera on synthesis of nano Tin (iv) oxide\",\"authors\":\"V. Veeraganesh, A. Subramaniyan, T. Sornakumar\",\"doi\":\"10.26655/AJNANOMAT.2018.6.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tin (IV) oxide (SnO2) is a compound semiconductor which has been used for gas sensing and fluoride removal. SnO2 was synthesized with tin chloride as a precursor by sol gel method. Aloe vera was added during the preparation of SnO2 to study its effect on the nanosize, composition and morphology. The prepared nanopowders are characterized by XRD, SEM and FTIR to analyze the crystallite size, morphology, functional groups and absorption bands. FTIR reveal the change in functional group and shift in absorbance due to presence of Aloe vera. XRD analysis with Williamson Hall plot confirms the nanosize which was in accordance with the SEM results. PL spectra were recorded to find the effect of band gap and intensity on SnO2 due to aloe vera.\",\"PeriodicalId\":8523,\"journal\":{\"name\":\"Asian Journal of Nanoscience and Materials\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Nanoscience and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26655/AJNANOMAT.2018.6.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Nanoscience and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26655/AJNANOMAT.2018.6.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Aloe vera on synthesis of nano Tin (iv) oxide
Tin (IV) oxide (SnO2) is a compound semiconductor which has been used for gas sensing and fluoride removal. SnO2 was synthesized with tin chloride as a precursor by sol gel method. Aloe vera was added during the preparation of SnO2 to study its effect on the nanosize, composition and morphology. The prepared nanopowders are characterized by XRD, SEM and FTIR to analyze the crystallite size, morphology, functional groups and absorption bands. FTIR reveal the change in functional group and shift in absorbance due to presence of Aloe vera. XRD analysis with Williamson Hall plot confirms the nanosize which was in accordance with the SEM results. PL spectra were recorded to find the effect of band gap and intensity on SnO2 due to aloe vera.