{"title":"5G网络上的认知机器人","authors":"Zhihan Lv, Liang Qiao, Qingjun Wang","doi":"10.1145/3414842","DOIUrl":null,"url":null,"abstract":"Emotional cognitive ability is a key technical indicator to measure the friendliness of interaction. Therefore, this research aims to explore robots with human emotion cognitively. By discussing the prospects of 5G technology and cognitive robots, the main direction of the study is cognitive robots. For the emotional cognitive robots, the analysis logic similar to humans is difficult to imitate; the information processing levels of robots are divided into three levels in this study: cognitive algorithm, feature extraction, and information collection by comparing human information processing levels. In addition, a multi-scale rectangular direction gradient histogram is used for facial expression recognition, and robust principal component analysis algorithm is used for facial expression recognition. In the pictures where humans intuitively feel smiles in sad emotions, the proportion of emotions obtained by the method in this study are as follows: calmness accounted for 0%, sadness accounted for 15.78%, fear accounted for 0%, happiness accounted for 76.53%, disgust accounted for 7.69%, anger accounted for 0%, and astonishment accounted for 0%. In the recognition of micro-expressions, humans intuitively feel negative emotions such as surprise and fear, and the proportion of emotions obtained by the method adopted in this study are as follows: calmness accounted for 32.34%, sadness accounted for 34.07%, fear accounted for 6.79%, happiness accounted for 0%, disgust accounted for 0%, anger accounted for 13.91%, and astonishment accounted for 15.89%. Therefore, the algorithm explored in this study can realize accuracy in cognition of emotions. From the preceding research results, it can be seen that the research method in this study can intuitively reflect the proportion of human expressions, and the recognition methods based on facial expressions and micro-expressions have good recognition effects, which is in line with human intuitive experience.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"431 1","pages":"1 - 18"},"PeriodicalIF":3.5000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cognitive Robotics on 5G Networks\",\"authors\":\"Zhihan Lv, Liang Qiao, Qingjun Wang\",\"doi\":\"10.1145/3414842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotional cognitive ability is a key technical indicator to measure the friendliness of interaction. Therefore, this research aims to explore robots with human emotion cognitively. By discussing the prospects of 5G technology and cognitive robots, the main direction of the study is cognitive robots. For the emotional cognitive robots, the analysis logic similar to humans is difficult to imitate; the information processing levels of robots are divided into three levels in this study: cognitive algorithm, feature extraction, and information collection by comparing human information processing levels. In addition, a multi-scale rectangular direction gradient histogram is used for facial expression recognition, and robust principal component analysis algorithm is used for facial expression recognition. In the pictures where humans intuitively feel smiles in sad emotions, the proportion of emotions obtained by the method in this study are as follows: calmness accounted for 0%, sadness accounted for 15.78%, fear accounted for 0%, happiness accounted for 76.53%, disgust accounted for 7.69%, anger accounted for 0%, and astonishment accounted for 0%. In the recognition of micro-expressions, humans intuitively feel negative emotions such as surprise and fear, and the proportion of emotions obtained by the method adopted in this study are as follows: calmness accounted for 32.34%, sadness accounted for 34.07%, fear accounted for 6.79%, happiness accounted for 0%, disgust accounted for 0%, anger accounted for 13.91%, and astonishment accounted for 15.89%. Therefore, the algorithm explored in this study can realize accuracy in cognition of emotions. From the preceding research results, it can be seen that the research method in this study can intuitively reflect the proportion of human expressions, and the recognition methods based on facial expressions and micro-expressions have good recognition effects, which is in line with human intuitive experience.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"431 1\",\"pages\":\"1 - 18\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3414842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3414842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Emotional cognitive ability is a key technical indicator to measure the friendliness of interaction. Therefore, this research aims to explore robots with human emotion cognitively. By discussing the prospects of 5G technology and cognitive robots, the main direction of the study is cognitive robots. For the emotional cognitive robots, the analysis logic similar to humans is difficult to imitate; the information processing levels of robots are divided into three levels in this study: cognitive algorithm, feature extraction, and information collection by comparing human information processing levels. In addition, a multi-scale rectangular direction gradient histogram is used for facial expression recognition, and robust principal component analysis algorithm is used for facial expression recognition. In the pictures where humans intuitively feel smiles in sad emotions, the proportion of emotions obtained by the method in this study are as follows: calmness accounted for 0%, sadness accounted for 15.78%, fear accounted for 0%, happiness accounted for 76.53%, disgust accounted for 7.69%, anger accounted for 0%, and astonishment accounted for 0%. In the recognition of micro-expressions, humans intuitively feel negative emotions such as surprise and fear, and the proportion of emotions obtained by the method adopted in this study are as follows: calmness accounted for 32.34%, sadness accounted for 34.07%, fear accounted for 6.79%, happiness accounted for 0%, disgust accounted for 0%, anger accounted for 13.91%, and astonishment accounted for 15.89%. Therefore, the algorithm explored in this study can realize accuracy in cognition of emotions. From the preceding research results, it can be seen that the research method in this study can intuitively reflect the proportion of human expressions, and the recognition methods based on facial expressions and micro-expressions have good recognition effects, which is in line with human intuitive experience.