Wanyue Xu, Y. Sheng, Zuobai Zhang, Haibin Kan, Zhongzhi Zhang
{"title":"幂律图具有最小尺度的随机漫步Kemeny常数","authors":"Wanyue Xu, Y. Sheng, Zuobai Zhang, Haibin Kan, Zhongzhi Zhang","doi":"10.1145/3366423.3380093","DOIUrl":null,"url":null,"abstract":"The mean hitting time from a node i to a node j selected randomly according to the stationary distribution of random walks is called the Kemeny constant, which has found various applications. It was proved that over all graphs with N vertices, complete graphs have the exact minimum Kemeny constant, growing linearly with N. Here we study numerically or analytically the Kemeny constant on many sparse real-world and model networks with scale-free small-world topology, and show that their Kemeny constant also behaves linearly with N. Thus, sparse networks with scale-free and small-world topology are favorable architectures with optimal scaling of Kemeny constant. We then present a theoretically guaranteed estimation algorithm, which approximates the Kemeny constant for a graph in nearly linear time with respect to the number of edges. Extensive numerical experiments on model and real networks show that our approximation algorithm is both efficient and accurate.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Power-Law Graphs Have Minimal Scaling of Kemeny Constant for Random Walks\",\"authors\":\"Wanyue Xu, Y. Sheng, Zuobai Zhang, Haibin Kan, Zhongzhi Zhang\",\"doi\":\"10.1145/3366423.3380093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mean hitting time from a node i to a node j selected randomly according to the stationary distribution of random walks is called the Kemeny constant, which has found various applications. It was proved that over all graphs with N vertices, complete graphs have the exact minimum Kemeny constant, growing linearly with N. Here we study numerically or analytically the Kemeny constant on many sparse real-world and model networks with scale-free small-world topology, and show that their Kemeny constant also behaves linearly with N. Thus, sparse networks with scale-free and small-world topology are favorable architectures with optimal scaling of Kemeny constant. We then present a theoretically guaranteed estimation algorithm, which approximates the Kemeny constant for a graph in nearly linear time with respect to the number of edges. Extensive numerical experiments on model and real networks show that our approximation algorithm is both efficient and accurate.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3380093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-Law Graphs Have Minimal Scaling of Kemeny Constant for Random Walks
The mean hitting time from a node i to a node j selected randomly according to the stationary distribution of random walks is called the Kemeny constant, which has found various applications. It was proved that over all graphs with N vertices, complete graphs have the exact minimum Kemeny constant, growing linearly with N. Here we study numerically or analytically the Kemeny constant on many sparse real-world and model networks with scale-free small-world topology, and show that their Kemeny constant also behaves linearly with N. Thus, sparse networks with scale-free and small-world topology are favorable architectures with optimal scaling of Kemeny constant. We then present a theoretically guaranteed estimation algorithm, which approximates the Kemeny constant for a graph in nearly linear time with respect to the number of edges. Extensive numerical experiments on model and real networks show that our approximation algorithm is both efficient and accurate.