基于拉普拉斯分布和黄金搜索的风电概率预测

Duehee Lee, R. Baldick
{"title":"基于拉普拉斯分布和黄金搜索的风电概率预测","authors":"Duehee Lee, R. Baldick","doi":"10.1109/TDC.2016.7519992","DOIUrl":null,"url":null,"abstract":"The point forecast of wind power and its error distribution are estimated under the assumption that the error distribution follows known distributions in a closed form. The point forecast is estimated via the gradient boosting machine (GBM). The mean of the error distribution is assumed to be zero, and the standard deviation (STD) of the error distribution is found to minimize the sum of the mismatches between the quantiles of the error distribution and the actual target value. The mismatch is measured by the pinball loss function, and the optimal STD is found through the golden section search method. The performance of our proposed algorithm is verified by using the numerical weather prediction (NWP) and wind power data from the 2014 Global Energy Forecasting Competition (GEFCom). Our current benchmark ranking is second according to the published competition result of 14th week.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"28 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Probabilistic wind power forecasting based on the laplace distribution and golden search\",\"authors\":\"Duehee Lee, R. Baldick\",\"doi\":\"10.1109/TDC.2016.7519992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The point forecast of wind power and its error distribution are estimated under the assumption that the error distribution follows known distributions in a closed form. The point forecast is estimated via the gradient boosting machine (GBM). The mean of the error distribution is assumed to be zero, and the standard deviation (STD) of the error distribution is found to minimize the sum of the mismatches between the quantiles of the error distribution and the actual target value. The mismatch is measured by the pinball loss function, and the optimal STD is found through the golden section search method. The performance of our proposed algorithm is verified by using the numerical weather prediction (NWP) and wind power data from the 2014 Global Energy Forecasting Competition (GEFCom). Our current benchmark ranking is second according to the published competition result of 14th week.\",\"PeriodicalId\":6497,\"journal\":{\"name\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"28 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2016.7519992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7519992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在误差分布服从已知的封闭分布的假设下,估计了风电的点预测及其误差分布。通过梯度增强机(GBM)对点预测进行估计。假设误差分布的均值为零,求误差分布的标准差(standard deviation, STD)以使误差分布的分位数与实际目标值的不匹配之和最小。通过弹球损失函数测量失配,通过黄金分割搜索法找到最优STD。利用2014年全球能源预测大赛(GEFCom)的数值天气预报(NWP)和风电数据验证了该算法的性能。根据第14周公布的比赛结果,我们目前的基准排名是第二名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic wind power forecasting based on the laplace distribution and golden search
The point forecast of wind power and its error distribution are estimated under the assumption that the error distribution follows known distributions in a closed form. The point forecast is estimated via the gradient boosting machine (GBM). The mean of the error distribution is assumed to be zero, and the standard deviation (STD) of the error distribution is found to minimize the sum of the mismatches between the quantiles of the error distribution and the actual target value. The mismatch is measured by the pinball loss function, and the optimal STD is found through the golden section search method. The performance of our proposed algorithm is verified by using the numerical weather prediction (NWP) and wind power data from the 2014 Global Energy Forecasting Competition (GEFCom). Our current benchmark ranking is second according to the published competition result of 14th week.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast evaluation of probabilistic total transfer capability considering multiple wind farms An automated model based fault locating method for distribution systems Fault location identification of a hybrid HVDC-VSC system containing cable and overhead line segments using transient data Conductor corrosion inspection of aluminum conductor steel reinforced transmission lines Microgrid load management and control strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1