F. Khrouf, H. Tebassi, M. Yallese, K. Chaoui, A. Haddad
{"title":"EN-AW-1350铝合金车削切削参数建模与优化","authors":"F. Khrouf, H. Tebassi, M. Yallese, K. Chaoui, A. Haddad","doi":"10.2478/ijame-2022-0024","DOIUrl":null,"url":null,"abstract":"Abstract An experimental investigation is carried out to examine the effects of various cutting parameters on the response criteria when turning EN-AW-1350 aluminum alloy under dry cutting conditions. The experiments related to the analysis of the influence of turning parameters on the surface roughness (Ra) and material removal rate (MRR) were carried out according to the Taguchi L27 orthogonal array (313) approach. The analysis of variance (ANOVA) was applied to characterizing the main elements affecting response parameters. Finally, the desirability function (DP) was applied for a bi-objective optimization of the machining parameters with the objective of achieving a better surface finish (Ra) and a higher productivity (MRR). The results showed that the cutting speed is the most dominant factor affecting Ra followed by the feed rate and the depth of cut. Moreover, the Artificial Neural Network (ANN) approach is found to be more reliable and accurate than its Response Surface methodology (RSM) counterpart in terms of predicting and detecting the non-linearity of the surface roughness and material removal rate mathematical models. ANN provided prediction models with a precision benefit of 8.21% more than those determined by RSM. The latter is easier to use, and provides more information than ANN in terms of the impacts and contributions of the model terms.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"11 1","pages":"124 - 142"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling and Optimization of Cutting Parameters When Turning EN-AW-1350 Aluminum Alloy\",\"authors\":\"F. Khrouf, H. Tebassi, M. Yallese, K. Chaoui, A. Haddad\",\"doi\":\"10.2478/ijame-2022-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An experimental investigation is carried out to examine the effects of various cutting parameters on the response criteria when turning EN-AW-1350 aluminum alloy under dry cutting conditions. The experiments related to the analysis of the influence of turning parameters on the surface roughness (Ra) and material removal rate (MRR) were carried out according to the Taguchi L27 orthogonal array (313) approach. The analysis of variance (ANOVA) was applied to characterizing the main elements affecting response parameters. Finally, the desirability function (DP) was applied for a bi-objective optimization of the machining parameters with the objective of achieving a better surface finish (Ra) and a higher productivity (MRR). The results showed that the cutting speed is the most dominant factor affecting Ra followed by the feed rate and the depth of cut. Moreover, the Artificial Neural Network (ANN) approach is found to be more reliable and accurate than its Response Surface methodology (RSM) counterpart in terms of predicting and detecting the non-linearity of the surface roughness and material removal rate mathematical models. ANN provided prediction models with a precision benefit of 8.21% more than those determined by RSM. The latter is easier to use, and provides more information than ANN in terms of the impacts and contributions of the model terms.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"11 1\",\"pages\":\"124 - 142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijame-2022-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijame-2022-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Modeling and Optimization of Cutting Parameters When Turning EN-AW-1350 Aluminum Alloy
Abstract An experimental investigation is carried out to examine the effects of various cutting parameters on the response criteria when turning EN-AW-1350 aluminum alloy under dry cutting conditions. The experiments related to the analysis of the influence of turning parameters on the surface roughness (Ra) and material removal rate (MRR) were carried out according to the Taguchi L27 orthogonal array (313) approach. The analysis of variance (ANOVA) was applied to characterizing the main elements affecting response parameters. Finally, the desirability function (DP) was applied for a bi-objective optimization of the machining parameters with the objective of achieving a better surface finish (Ra) and a higher productivity (MRR). The results showed that the cutting speed is the most dominant factor affecting Ra followed by the feed rate and the depth of cut. Moreover, the Artificial Neural Network (ANN) approach is found to be more reliable and accurate than its Response Surface methodology (RSM) counterpart in terms of predicting and detecting the non-linearity of the surface roughness and material removal rate mathematical models. ANN provided prediction models with a precision benefit of 8.21% more than those determined by RSM. The latter is easier to use, and provides more information than ANN in terms of the impacts and contributions of the model terms.
期刊介绍:
INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.