{"title":"生物打印股骨模型:生物医学研究的骨替代品","authors":"A. Vasanthanathan, Senthil Maharaj Ramesh Kennedy","doi":"10.17222/mit.2023.831","DOIUrl":null,"url":null,"abstract":"This paper deals with the development of a medical support model that can be used as a prototype to study the anatomy of the femur and for biomechanical research experimentation related to bone plates. CT scan data of the femur bone are converted into a 3D model using MIMICS software and imported into a finite-element model for analysis. The materials selected for the fabrication of the femur model were PEEK and CF PEEK (infused with chopped carbon fibre). The femur bone model was analysed using ANSYS® WORKBENCH® 2021 R2 with different material properties. By conducting a subsequent FE analysis, the optimal material was finally arrived at. Using 3D-printing technology, the 3D model of the femur was fabricated by using a material spool with better properties suited for the femur bone. The FE results were compared with the experimental results of the fabricated femur model and the results of the CF PEEK bone model closely matched the properties of real human femur, and it can be used as a femur bone substitute for biomechanical investigations of bone plates instead of using a real femur.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"BIO-PRINTING OF FEMUR MODEL: A BONE SUBSTITUTE FOR BIOMEDICAL RESEARCH\",\"authors\":\"A. Vasanthanathan, Senthil Maharaj Ramesh Kennedy\",\"doi\":\"10.17222/mit.2023.831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the development of a medical support model that can be used as a prototype to study the anatomy of the femur and for biomechanical research experimentation related to bone plates. CT scan data of the femur bone are converted into a 3D model using MIMICS software and imported into a finite-element model for analysis. The materials selected for the fabrication of the femur model were PEEK and CF PEEK (infused with chopped carbon fibre). The femur bone model was analysed using ANSYS® WORKBENCH® 2021 R2 with different material properties. By conducting a subsequent FE analysis, the optimal material was finally arrived at. Using 3D-printing technology, the 3D model of the femur was fabricated by using a material spool with better properties suited for the femur bone. The FE results were compared with the experimental results of the fabricated femur model and the results of the CF PEEK bone model closely matched the properties of real human femur, and it can be used as a femur bone substitute for biomechanical investigations of bone plates instead of using a real femur.\",\"PeriodicalId\":18258,\"journal\":{\"name\":\"Materiali in tehnologije\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiali in tehnologije\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2023.831\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2023.831","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
BIO-PRINTING OF FEMUR MODEL: A BONE SUBSTITUTE FOR BIOMEDICAL RESEARCH
This paper deals with the development of a medical support model that can be used as a prototype to study the anatomy of the femur and for biomechanical research experimentation related to bone plates. CT scan data of the femur bone are converted into a 3D model using MIMICS software and imported into a finite-element model for analysis. The materials selected for the fabrication of the femur model were PEEK and CF PEEK (infused with chopped carbon fibre). The femur bone model was analysed using ANSYS® WORKBENCH® 2021 R2 with different material properties. By conducting a subsequent FE analysis, the optimal material was finally arrived at. Using 3D-printing technology, the 3D model of the femur was fabricated by using a material spool with better properties suited for the femur bone. The FE results were compared with the experimental results of the fabricated femur model and the results of the CF PEEK bone model closely matched the properties of real human femur, and it can be used as a femur bone substitute for biomechanical investigations of bone plates instead of using a real femur.
期刊介绍:
The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.