铜(Cu)对水稻分离群体产量构成及相关性状的影响

E. Andrew, O. Dorcas, Olaoye Olawale
{"title":"铜(Cu)对水稻分离群体产量构成及相关性状的影响","authors":"E. Andrew, O. Dorcas, Olaoye Olawale","doi":"10.11648/J.IJGG.20200802.15","DOIUrl":null,"url":null,"abstract":"Trace elements are very critical for rice growth of which Cu is one of the essential trace elements for rice and excess of cupper becomes toxic to rice growth. The aim of this study was to determine the productivity increase in rice crop and genotype reactions to application of Copper under the tropical rainforest condition. Three experiments were established concurrently in randomized complete block design in three replications in pots. Treatment comprised of 6 breeding lines each from two rice populations of F2 and F3 generations and two popular checks. Experiment one is the control without CuSO4 treatment, while experiment two and three is the F2 and F3 populations, respectively treated with CuSO4 solution. Three concentration levels of CuSO4 solution (15mg Cu /kg of soil, 30mg Cu /kg of soil and 60mg Cu /kg of soil) were applied into each pots a week before transplanting in the treated experiments. This study observed that at 30mg of Cu/kg of soil is the optimum level for rice performance based on these experiments beyond, reduction in rice performance. Reduction of 24.92% and 22.12% of total grain yield of F2 and F3 populations at 60mg of Cu/kg of soil as compared to the control were recorded, stable and high yielding genotypes across the copper concentration levels were identified for copper breeding programme.","PeriodicalId":88902,"journal":{"name":"International journal of genetics and molecular biology","volume":"4 1","pages":"85"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Copper (Cu) on Yield Components and Associated Traits in Segregating Populations of Lowland Rice (O. sativa L.)\",\"authors\":\"E. Andrew, O. Dorcas, Olaoye Olawale\",\"doi\":\"10.11648/J.IJGG.20200802.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trace elements are very critical for rice growth of which Cu is one of the essential trace elements for rice and excess of cupper becomes toxic to rice growth. The aim of this study was to determine the productivity increase in rice crop and genotype reactions to application of Copper under the tropical rainforest condition. Three experiments were established concurrently in randomized complete block design in three replications in pots. Treatment comprised of 6 breeding lines each from two rice populations of F2 and F3 generations and two popular checks. Experiment one is the control without CuSO4 treatment, while experiment two and three is the F2 and F3 populations, respectively treated with CuSO4 solution. Three concentration levels of CuSO4 solution (15mg Cu /kg of soil, 30mg Cu /kg of soil and 60mg Cu /kg of soil) were applied into each pots a week before transplanting in the treated experiments. This study observed that at 30mg of Cu/kg of soil is the optimum level for rice performance based on these experiments beyond, reduction in rice performance. Reduction of 24.92% and 22.12% of total grain yield of F2 and F3 populations at 60mg of Cu/kg of soil as compared to the control were recorded, stable and high yielding genotypes across the copper concentration levels were identified for copper breeding programme.\",\"PeriodicalId\":88902,\"journal\":{\"name\":\"International journal of genetics and molecular biology\",\"volume\":\"4 1\",\"pages\":\"85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of genetics and molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJGG.20200802.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of genetics and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJGG.20200802.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

微量元素对水稻生长至关重要,其中铜是水稻必需的微量元素之一,过量的铜对水稻生长有毒害作用。本研究旨在研究热带雨林条件下施用铜对水稻产量的影响及其基因型反应。采用随机完全区组设计,3个重复,同时建立3个试验。处理包括F2和F3代两个水稻群体各6个选育系和2个普通对照。试验1为未加CuSO4处理的对照,试验2和试验3分别为加CuSO4溶液处理的F2和F3群体。在移栽前一周,每盆分别施用15mg Cu /kg土壤、30mg Cu /kg土壤和60mg Cu /kg土壤3种浓度的CuSO4溶液。本研究发现,在这些试验基础上,30mg Cu/kg土壤是水稻生产性能的最佳水平,超出了水稻生产性能的降低。结果表明,与对照相比,在60mg Cu/kg土壤处理下,F2和F3群体的籽粒总产量分别降低了24.92%和22.12%,并在铜育种计划中确定了不同铜浓度水平下稳定和高产的基因型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Copper (Cu) on Yield Components and Associated Traits in Segregating Populations of Lowland Rice (O. sativa L.)
Trace elements are very critical for rice growth of which Cu is one of the essential trace elements for rice and excess of cupper becomes toxic to rice growth. The aim of this study was to determine the productivity increase in rice crop and genotype reactions to application of Copper under the tropical rainforest condition. Three experiments were established concurrently in randomized complete block design in three replications in pots. Treatment comprised of 6 breeding lines each from two rice populations of F2 and F3 generations and two popular checks. Experiment one is the control without CuSO4 treatment, while experiment two and three is the F2 and F3 populations, respectively treated with CuSO4 solution. Three concentration levels of CuSO4 solution (15mg Cu /kg of soil, 30mg Cu /kg of soil and 60mg Cu /kg of soil) were applied into each pots a week before transplanting in the treated experiments. This study observed that at 30mg of Cu/kg of soil is the optimum level for rice performance based on these experiments beyond, reduction in rice performance. Reduction of 24.92% and 22.12% of total grain yield of F2 and F3 populations at 60mg of Cu/kg of soil as compared to the control were recorded, stable and high yielding genotypes across the copper concentration levels were identified for copper breeding programme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic variability, heritability and genetic advance among yield and yield related traits of advanced Tef [Eragrostis tef (Zucc.) Trotter] breeding lines Sequencing of S5 gene in autotetraploid rice japonica and indica to overcome F1 hybrids embryo sac sterility In silico analysis of mutations associated with genetic variability of the strain African cassava mosaic virus (ACMV) in three departments of Cte dIvoire Contribution of cytogenetic and molecular biology in disorders of sex development diagnosis: About 55 cases The Impact of Sequencing Human Genome on Genomic Food & Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1