基于中心对齐和高斯连接的核正则化EEGNet运动图像识别

Comput. Pub Date : 2023-07-21 DOI:10.3390/computers12070145
Mateo Tobón-Henao, A. Álvarez-Meza, G. Castellanos-Domínguez
{"title":"基于中心对齐和高斯连接的核正则化EEGNet运动图像识别","authors":"Mateo Tobón-Henao, A. Álvarez-Meza, G. Castellanos-Domínguez","doi":"10.3390/computers12070145","DOIUrl":null,"url":null,"abstract":"Brain–computer interfaces (BCIs) from electroencephalography (EEG) provide a practical approach to support human–technology interaction. In particular, motor imagery (MI) is a widely used BCI paradigm that guides the mental trial of motor tasks without physical movement. Here, we present a deep learning methodology, named kernel-based regularized EEGNet (KREEGNet), leveled on centered kernel alignment and Gaussian functional connectivity, explicitly designed for EEG-based MI classification. The approach proactively tackles the challenge of intrasubject variability brought on by noisy EEG records and the lack of spatial interpretability within end-to-end frameworks applied for MI classification. KREEGNet is a refinement of the widely accepted EEGNet architecture, featuring an additional kernel-based layer for regularized Gaussian functional connectivity estimation based on CKA. The superiority of KREEGNet is evidenced by our experimental results from binary and multiclass MI classification databases, outperforming the baseline EEGNet and other state-of-the-art methods. Further exploration of our model’s interpretability is conducted at individual and group levels, utilizing classification performance measures and pruned functional connectivities. Our approach is a suitable alternative for interpretable end-to-end EEG-BCI based on deep learning.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"14 1","pages":"145"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel-Based Regularized EEGNet Using Centered Alignment and Gaussian Connectivity for Motor Imagery Discrimination\",\"authors\":\"Mateo Tobón-Henao, A. Álvarez-Meza, G. Castellanos-Domínguez\",\"doi\":\"10.3390/computers12070145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain–computer interfaces (BCIs) from electroencephalography (EEG) provide a practical approach to support human–technology interaction. In particular, motor imagery (MI) is a widely used BCI paradigm that guides the mental trial of motor tasks without physical movement. Here, we present a deep learning methodology, named kernel-based regularized EEGNet (KREEGNet), leveled on centered kernel alignment and Gaussian functional connectivity, explicitly designed for EEG-based MI classification. The approach proactively tackles the challenge of intrasubject variability brought on by noisy EEG records and the lack of spatial interpretability within end-to-end frameworks applied for MI classification. KREEGNet is a refinement of the widely accepted EEGNet architecture, featuring an additional kernel-based layer for regularized Gaussian functional connectivity estimation based on CKA. The superiority of KREEGNet is evidenced by our experimental results from binary and multiclass MI classification databases, outperforming the baseline EEGNet and other state-of-the-art methods. Further exploration of our model’s interpretability is conducted at individual and group levels, utilizing classification performance measures and pruned functional connectivities. Our approach is a suitable alternative for interpretable end-to-end EEG-BCI based on deep learning.\",\"PeriodicalId\":10526,\"journal\":{\"name\":\"Comput.\",\"volume\":\"14 1\",\"pages\":\"145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12070145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12070145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

来自脑电图(EEG)的脑机接口(bci)提供了一种支持人机交互的实用方法。尤其是运动意象(MI)是一种广泛使用的脑机接口范式,它指导在没有身体运动的情况下进行运动任务的心理试验。在这里,我们提出了一种深度学习方法,称为基于核的正则化EEGNet (KREEGNet),它基于中心核对齐和高斯函数连通性,明确设计用于基于脑电图的MI分类。该方法主动解决了脑电噪声记录带来的主体内可变性的挑战,以及应用于MI分类的端到端框架缺乏空间可解释性。KREEGNet是对广泛接受的EEGNet架构的改进,具有一个额外的基于核的层,用于基于CKA的正则化高斯函数连通性估计。我们在二进制和多类MI分类数据库中的实验结果证明了KREEGNet的优越性,优于基线EEGNet和其他最先进的方法。进一步探索我们的模型的可解释性在个人和群体层面进行,利用分类性能指标和修剪功能连接。我们的方法是基于深度学习的可解释的端到端EEG-BCI的合适替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel-Based Regularized EEGNet Using Centered Alignment and Gaussian Connectivity for Motor Imagery Discrimination
Brain–computer interfaces (BCIs) from electroencephalography (EEG) provide a practical approach to support human–technology interaction. In particular, motor imagery (MI) is a widely used BCI paradigm that guides the mental trial of motor tasks without physical movement. Here, we present a deep learning methodology, named kernel-based regularized EEGNet (KREEGNet), leveled on centered kernel alignment and Gaussian functional connectivity, explicitly designed for EEG-based MI classification. The approach proactively tackles the challenge of intrasubject variability brought on by noisy EEG records and the lack of spatial interpretability within end-to-end frameworks applied for MI classification. KREEGNet is a refinement of the widely accepted EEGNet architecture, featuring an additional kernel-based layer for regularized Gaussian functional connectivity estimation based on CKA. The superiority of KREEGNet is evidenced by our experimental results from binary and multiclass MI classification databases, outperforming the baseline EEGNet and other state-of-the-art methods. Further exploration of our model’s interpretability is conducted at individual and group levels, utilizing classification performance measures and pruned functional connectivities. Our approach is a suitable alternative for interpretable end-to-end EEG-BCI based on deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A U-Net Architecture for Inpainting Lightstage Normal Maps Implementing Virtualization on Single-Board Computers: A Case Study on Edge Computing Electrocardiogram Signals Classification Using Deep-Learning-Based Incorporated Convolutional Neural Network and Long Short-Term Memory Framework The Mechanism of Resonant Amplification of One-Dimensional Detonation Propagating in a Non-Uniform Mixture Application of Immersive VR Serious Games in the Treatment of Schizophrenia Negative Symptoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1